通过上节的块设备驱动分析,本节便通过内存来模拟块设备驱动 ,方便我们更加熟悉块设备驱动框架

参考内核自带的块设备驱动程序:

drivers/block /xd.c

drivers/block /z2ram.c


1.本节需要的结构体如下:

1.1 gendisk磁盘结构体:

 struct gendisk {
int major; //设备主设备号,等于register_blkdev()函数里的major
int first_minor; //起始次设备号,等于0,则表示此设备号从0开始的
int minors; //分区(次设备)数量,当使用alloc_disk()时,就会自动设置该成员
char disk_name[]; //块设备名称, 等于register_blkdev()函数里的name struct hd_struct **part; /*分区表的信息*/
int part_uevent_suppress;
struct block_device_operations *fops; //块设备操作函数
struct request_queue *queue; //请求队列,用于管理该设备IO请求队列的指针*
void *private_data; /*私有数据*/
sector_t capacity; /*扇区数,512字节为1个扇区,描述设备容量*/
....
};

1.2 request申请结构体:

struct request {
//用于挂在请求队列链表的节点,使用函数elv_next_request()访问它,而不能直接访问
struct list_head queuelist;
struct list_head donelist; /*用于挂在已完成请求链表的节点*/
struct request_queue *q; /*指向请求队列*/ unsigned int cmd_flags; /*命令标识*/ enum rq_cmd_type_bits cmd_type; //读写命令标志,为 0(READ)表示读, 为1(WRITE)表示写 sector_t sector; //要提交的下一个扇区偏移位置(offset)
... ...
unsigned int current_nr_sectors; //当前需要传送的扇区数(长度)
... ... char *buffer; //当前请求队列链表的申请里面的数据,用来读写扇区数据(源地址)
... ...
};

2.本节需要的函数如下:

int register_blkdev(unsigned int major, const char *name);

创建一个块设备,当major==0时,表示动态创建,创建成功会返回一个主设备号

unregister_blkdev(unsigned int major, const char *name);

卸载一个块设备, 在出口函数中使用,major:主设备号, name:名称

struct gendisk *alloc_disk(int minors);

分配一个gendisk结构,minors为分区数,填1表示不分区

void del_gendisk(struct gendisk *disk);

释放gendisk结构,在出口函数中使用,也就是不需要这个磁盘了

request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock);

分配一个request_queue请求队列,分配成功返回一个request_queue结构体

rfn: request_fn_proc结构体,用来执行放置在队列中的请求的处理函数

  lock:队列访问权限的自旋锁(spinlock),该锁通过DEFINE_SPINLOCK()来定义

void blk_cleanup_queue(request_queue_t * q);

清除内核中的request_queue请求队列,在出口函数中使用

static DEFINE_SPINLOCK(spinlock_t lock);     

定义一个自旋锁(spinlock)

static inline void set_capacity(struct gendisk *disk, sector_t size);

设置gendisk结构体扇区数(成员copacity), size等于扇区数

该函数内容如下:

disk->capacity = size;

void add_disk(struct gendisk *gd);

向内核中注册gendisk结构体

void put_disk(struct gendisk *disk);

注销内核中的gendisk结构体,在出口函数中使用

struct request *elv_next_request(request_queue_t *q);

通过电梯算法获取申请队列中未完成的申请,获取成功返回一个request结构体,不成功返回NULL

(PS: 不使用获取到的这个申请时,应使用end_request()来结束获取申请)

void end_request(struct request *req, int uptodate);

结束获取申请, 当uptodate==0,表示使用该申请读写扇区失败, uptodate==1,表示成功

static inline void *kzalloc(size_t size, gfp_t flags);

分配一段静态缓存,这里用来当做我们的磁盘扇区用,分配成功返回缓存地址,分配失败会返回0

void kfree(const void *block);

注销一段静态缓存,与kzalloc()成对,在出口函数中使用

rq_data_dir(rq);

获取request申请结构体的命令标志(cmd_flags成员),当返回READ(0)表示读扇区命令,否则为写扇区命令

3.步骤如下:

3.1在入口函数中:

  • 1)使用register_blkdev()创建一个块设备
  • 2) blk_init_queue()使用分配一个申请队列,并赋申请队列处理函数
  • 3)使用alloc_disk()分配一个gendisk结构体
  • 4)设置gendisk结构体的成员
  • ->4.1)设置成员参数(major、first_minor、disk_name、fops)
  • ->4.2)设置queue成员,等于之前分配的申请队列
  • ->4.3)通过set_capacity()设置capacity成员,等于扇区数
  • 5)使用kzalloc()来获取缓存地址,用做扇区
  • 6)使用add_disk()注册gendisk结构体

3.2在申请队列的处理函数中

  • 1) while循环使用elv_next_request()获取申请队列中每个未处理的申请
  • 2)使用rq_data_dir()来获取每个申请的读写命令标志,为 0(READ)表示读, 为1(WRITE)表示写
  • 3)使用memcp()来读或者写扇区(缓存)
  • 4)使用end_request()来结束获取的每个申请

3.3在出口函数中

  • 1)使用put_disk()和del_gendisk()来注销,释放gendisk结构体
  • 2)使用kfree()释放磁盘扇区缓存
  • 3)使用blk_cleanup_queue()清除内存中的申请队列
  • 4)使用unregister_blkdev()卸载块设备

4.代码如下:

#include <linux/module.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/genhd.h>
#include <linux/hdreg.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/wait.h>
#include <linux/blkdev.h>
#include <linux/blkpg.h>
#include <linux/delay.h>
#include <linux/io.h> #include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/dma.h> static DEFINE_SPINLOCK(memblock_lock);        //定义自旋锁
static request_queue_t * memblock_request; //申请队列
static struct gendisk *memblock_disk;   //磁盘结构体
static int memblock_major; #define BLOCKBUF_SIZE (1024*1024)      //磁盘大小
#define SECTOR_SIZE (512) //扇区大小
static unsigned char *block_buf; //磁盘地址 static int memblock_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
geo->heads =; // 2个磁头分区
geo->cylinders = ; //一个磁头有32个柱面
geo->sectors = BLOCKBUF_SIZE/(**SECTOR_SIZE); //一个柱面有多少个扇区
return ;
} static struct block_device_operations memblock_fops = {
.owner = THIS_MODULE,
.getgeo = memblock_getgeo, //几何,保存磁盘的信息(柱头,柱面,扇区)
}; /*申请队列处理函数*/
static void do_memblock_request (request_queue_t * q)
{
struct request *req;
unsigned long offset;
unsigned long len;
static unsigned long r_cnt = ;
static unsigned long w_cnt = ; while ((req = elv_next_request(q)) != NULL) //获取每个申请
{
offset=req->sector*SECTOR_SIZE; //偏移值
len=req->current_nr_sectors*SECTOR_SIZE; //长度 if(rq_data_dir(req)==READ)
{
memcpy(req->buffer,block_buf+offset,len); //读出缓存
}
else
{
memcpy(block_buf+offset,req->buffer,len); //写入缓存
}
end_request(req, ); //结束获取的申请
}
} /*入口函数*/
static int memblock_init(void)
{
/*1)使用register_blkdev()创建一个块设备*/
memblock_major=register_blkdev(, "memblock"); /*2) blk_init_queue()使用分配一个申请队列,并赋申请队列处理函数*/
memblock_request=blk_init_queue(do_memblock_request,&memblock_lock); /*3)使用alloc_disk()分配一个gendisk结构体*/
memblock_disk=alloc_disk(); //不分区 /*4)设置gendisk结构体的成员*/
/*->4.1)设置成员参数(major、first_minor、disk_name、fops)*/
memblock_disk->major = memblock_major;
memblock_disk->first_minor = ;
sprintf(memblock_disk->disk_name, "memblock");
memblock_disk->fops = &memblock_fops; /*->4.2)设置queue成员,等于之前分配的申请队列*/
memblock_disk->queue = memblock_request; /*->4.3)通过set_capacity()设置capacity成员,等于扇区数*/
set_capacity(memblock_disk,BLOCKBUF_SIZE/SECTOR_SIZE); /*5)使用kzalloc()来获取缓存地址,用做扇区*/
block_buf=kzalloc(BLOCKBUF_SIZE, GFP_KERNEL); /*6)使用add_disk()注册gendisk结构体*/
add_disk(memblock_disk);
return ;
}
static void memblock_exit(void)
{
/*1)使用put_disk()和del_gendisk()来注销,释放gendisk结构体*/
put_disk(memblock_disk);
del_gendisk(memblock_disk);
/*2)使用kfree()释放磁盘扇区缓存 */
kfree(block_buf);
/*3)使用blk_cleanup_queue()清除内存中的申请队列 */
blk_cleanup_queue(memblock_request); /*4)使用unregister_blkdev()卸载块设备 */
unregister_blkdev(memblock_major,"memblock");
} module_init(memblock_init);
module_exit(memblock_exit);
MODULE_LICENSE("GPL");

5.测试运行

insmod ramblock.ko                                     //挂载memblock块设备

mkdosfs /dev/memblock                               //将memblock块设备格式化为dos磁盘类型

mount /dev/ memblock   /tmp/                    //挂载块设备到/tmp目录下

接下来在/tmp目录下vi 1.txt文件,最终都会保存在/dev/ memblock块设备里面

cd /; umount /tmp/                    //退出/tmp,卸载,同时之前读写的文件也会消失

cat /dev/memblock > /mnt/memblock.bin   //在/mnt目录下创建.bin文件,然后将块设备里面的文件追加到.bin里面

然后进入linux的nfs挂载目录中

sudo mount -o loop ramblock.bin   /mnt      //挂载ramblock.bin, -loop:将文件当做磁盘来挂载

如下图,就可以找到我们之前在开发板上创建的1.txt了

说明这个块设备测试运行无误

6.使用fdisk来对磁盘分区

(fdisk命令使用详解: http://www.cnblogs.com/lifexy/p/7661239.html)

共分了两个分区,如下图所示:

如下图,接下来就可以向上小节那样,分别操作多个分区磁盘了:

7.使用fdisk来设置磁盘分区的系统属性

通过 fdisk -l 查看磁盘分区属性,以SD卡的磁盘(mmc)为例,刚分区出来的磁盘是默认值:

将属性设置为Win95 FAT32 (LBA):

fdisk /dev/mmcblk1    

然后输入t 改变磁盘属性,再输入l 列出可以设置的属性表:

找到Win95 FAT32 (LBA)的标签是c

所以接下来输入:

c       //选择Win95 FAT32 (LBA)
w      //保存并退出

再次输入fdisk -l,可以看到磁盘属性已经更改了:

下章学习:  24.Linux-Nand Flash驱动(分析MTD层并制作NAND驱动)

23.Linux-块设备驱动(详解)的更多相关文章

  1. Linux块设备驱动详解

    <机械硬盘> a:磁盘结构 -----传统的机械硬盘一般为3.5英寸硬盘,并由多个圆形蝶片组成,每个蝶片拥有独立的机械臂和磁头,每个堞片的圆形平面被划分了不同的同心圆,每一个同心圆称为一个 ...

  2. 【转】草根老师的 linux字符设备驱动详解

    Linux 驱动 之 模块化编程 Linux 驱动之模块参数和符号导出 Linux 设备驱动之字符设备(一) Linux 设备驱动之字符设备(二) Linux 设备驱动之字符设备(三)

  3. Linux dts 设备树详解(一) 基础知识

    Linux dts 设备树详解(一) 基础知识 Linux dts 设备树详解(二) 动手编写设备树dts 文章目录 1 前言 2 概念 2.1 什么是设备树 dts(device tree)? 2. ...

  4. linux块设备驱动之实例

    1.注册:向内核注册个块设备驱动,其实就是用主设备号告诉内核这个代表块设备驱动 sbull_major  =  register_blkdev(sbull_major, "sbull&quo ...

  5. Linux dts 设备树详解(二) 动手编写设备树dts

    Linux dts 设备树详解(一) 基础知识 Linux dts 设备树详解(二) 动手编写设备树dts 文章目录 前言 硬件结构 设备树dts文件 前言 在简单了解概念之后,我们可以开始尝试写一个 ...

  6. linux块设备驱动---程序设计(转)

    块设备驱动注册与注销 块设备驱动中的第1个工作通常是注册它们自己到内核,完成这个任务的函数是 register_blkdev(),其原型为:int register_blkdev(unsigned i ...

  7. linux块设备驱动---相关结构体(转)

    上回最后面介绍了相关数据结构,下面再详细介绍 块设备对象结构 block_device 内核用结构block_device实例代表一个块设备对象,如:整个硬盘或特定分区.如果该结构代表一个分区,则其成 ...

  8. Linux 块设备驱动 (一)

    1.块设备的I/O操作特点 字符设备与块设备的区别: 块设备只能以块为单位接受输入和返回输出,而字符设备则以字符为单位. 块设备对于I/O请求有对应的缓冲区,因此它们可以选择以什么顺序进行响应,字符设 ...

  9. Linux块设备驱动(一) _驱动模型

    块设备是Linux三大设备之一,其驱动模型主要针对磁盘,Flash等存储类设备,本文以3.14为蓝本,探讨内核中的块设备驱动模型 框架 下图是Linux中的块设备模型示意图,应用层程序有两种方式访问一 ...

随机推荐

  1. 第3阶段——内核启动分析之创建si工程和分析stext启动内核函数(4)

    目标: (1)创建Source Insight 工程,方便后面分析如何启动内核的 (2)分析uboot传递参数,链接脚本如何进入stext的  (3) 分析stext函数如何启动内核:  (3.1) ...

  2. Microsoft Visual Studio 打开代码出现乱码解决方案

    在用VS编写代码时,文本的字符集可能和编译器的字符集不同,在这种情况下代码会显示出乱码. 解决办法: 在VS的工具->选项里面找到"文本编辑器",勾选“自动检测不带签名的UT ...

  3. Centos7 & Docker & Jenkins & ASP.NET Core 2.0 自动化发布和部署

    写在前面 Docker一直很火热,一直想把原本的Jenkins自动部署工具搬到Docker上面,无奈今年一直忙于各种事情,迟迟未实施这个事情,正好迎来了dotnet core 2.0 的正式发布,升级 ...

  4. springmvc注解

    简介: handler method 参数绑定常用的注解,我们根据他们处理的Request的不同内容部分分为四类:(主要讲解常用类型) A.处理requet uri 部分(这里指uri templat ...

  5. 集美大学网络1413第十次作业成绩(团队六) -- 展示博客(Alpha版本)

    题目 团队作业6--展示博客(Alpha版本) 团队作业6成绩  团队/分值 简介& 项目地址 项目目标 (典型用户. 功能描述. 预期用户数量) 如何满足 用户需求 已完成目标 团队分工 团 ...

  6. 201521123107 《Java程序设计》第3周学习总结

    第3周作业-面向对象基本概念 1.本周学习总结 2.书面作业 1.代码阅读 public class Test1 { private int i = 1;//这行不能修改 private static ...

  7. Java学习1——JDK(学前准备)

    一.下载: 可以在http://www.oracle.com/technetwork/java/javase/downloads/index.html下载并安装Java SE(JDK) java大致版 ...

  8. 201521123090 《Java程序设计》第7周学习总结

    1. 本周学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 参考资料: XMind 2. 书面作业 1.ArrayList代码分析 1.1 解释ArrayList的contains源代 ...

  9. 201521123008《Java程序设计》第五周实验总结

    1.本章学习总结 2.书面作业 1.代码阅读:Child压缩包内源代码 1.1 com.parent包中Child.java文件能否编译通过?哪句会出现错误?试改正该错误.并分析输出结果. 不能.Sy ...

  10. 201521123101 《Java程序设计》第4周学习总结

    1. 本周学习总结 1.1 尝试使用思维导图总结有关继承的知识点. 1.2 使用常规方法总结其他上课内容. 理解类的继承的概念,明白父与子之间关系的 2. 书面作业 1.注释的应用,使用类的注释与方法 ...