【机器学习笔记之二】决策树的python实现
本文结构:
- 是什么?
- 有什么算法?
- 数学原理?
- 编码实现算法?
1. 是什么?
简单地理解,就是根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为几类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。
2. 有什么算法?
常用的几种决策树算法有ID3、C4.5、CART:
ID3:选择信息熵增益最大的feature作为node,实现对数据的归纳分类。
C4.5:是ID3的一个改进,比ID3准确率高且快,可以处理连续值和有缺失值的feature。
CART:使用基尼指数的划分准则,通过在每个步骤最大限度降低不纯洁度,CART能够处理孤立点以及能够对空缺值进行处理。
3. 数学原理?
ID3: Iterative Dichotomiser 3
下面这个数据集,可以同时被上面两颗树表示,结果是一样的,而我们更倾向于选择简单的树。
那么怎样做才能使得学习到的树是最简单的呢?
下面是 ID3( Iterative Dichotomiser 3 )的算法:
例如下面数据集,哪个是最好的 Attribute?
用熵Entropy来衡量:
E(S) 是数据集S的熵
i 指每个结果,即 No,Yes的概率
E越大意味着信息越混乱,我们的目标是要让E最小。
E在0-1之间,如果P+的概率在0.5, 此时E最大,这时候说明信息对我们没有明确的意义,对分类没有帮助。
但是我们不仅仅想要变量的E最小,还想要这棵树是 well organized。
所以用到 Gain:信息增益
意思是如果我后面要用这个变量的话,它的E会减少多少。
例如下面的数据集:
先计算四个feature的熵E,及其分支的熵,然后用Gain的公式计算信息增益。
再选择Gain最大的特征是 outlook。
第一层选择出来后,各个分支再继续选择下一层,计算Gain最大的,例如分支 sunny 的下一层节点是 humidity。
详细的计算步骤可以参考这篇博文。
C4.5
ID3有个局限是对于有大量数据的feature过于敏感,C4.5是它的一个改进,通过选择最大的信息增益率 gain ratio 来选择节点。而且它可以处理连续的和有缺失值的数据。
P’ (j/p) is the proportion of elements present at the position p, taking the value of j-th test.
例如 outlook 作为第一层节点后,它有 3 个分支,分别有 5,4,5 条数据,则 SplitInfo(5,4,5) = -5/14log(5,14)-4/14log(4,14)-5/14(5,14) ,其中 log(5,14) 即为 log2(5/14)。
下面是一个有连续值和缺失值的例子:
连续值
第一步计算 Gain,除了连续值的 humudity,其他步骤和前文一样。
要计算 humudity 的 Gain 的话,先把所有值升序排列:
{65, 70, 70, 70, 75, 78, 80, 80, 80, 85, 90, 90, 95, 96}
然后把重复的去掉:
{65, 70, 75, 78, 80, 85, 90, 95, 96}
如下图所示,按区间计算 Gain,然后选择最大的 Gain (S, Humidity) = 0.102
因为 Gain(S, Outlook) = 0 .246,所以root还是outlook:
缺失值
处理有缺失值的数据时候,用下图的公式:
例如 D12 是不知道的。
计算全集和 outlook 的 info,
其中几个分支的熵如下,再计算出 outlook 的 Gain:
比较一下 ID3 和 C4.5 的准确率和时间:
accuracy :
execution time:
4. 编码实现算法?
代码可以看《机器学习实战》这本书和这篇博客。
完整代码可以在 github 上查看。
接下来以 C4.5 的代码为例:
1. 定义数据:
def createDataSet():
dataSet = [[0, 0, 0, 0, 'N'],
[0, 0, 0, 1, 'N'],
[1, 0, 0, 0, 'Y'],
[2, 1, 0, 0, 'Y'],
[2, 2, 1, 0, 'Y'],
[2, 2, 1, 1, 'N'],
[1, 2, 1, 1, 'Y']]
labels = ['outlook', 'temperature', 'humidity', 'windy']
return dataSet, labels
2. 计算熵:
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1 # 数每一类各多少个, {'Y': 4, 'N': 3}
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob * log(prob, 2)
return shannonEnt
3. 选择最大的gain ratio对应的feature:
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 #feature个数
baseEntropy = calcShannonEnt(dataSet) #整个dataset的熵
bestInfoGainRatio = 0.0
bestFeature = -1
for i in range(numFeatures):
featList = [example[i] for example in dataSet] #每个feature的list
uniqueVals = set(featList) #每个list的唯一值集合
newEntropy = 0.0
splitInfo = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value) #每个唯一值对应的剩余feature的组成子集
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
splitInfo += -prob * log(prob, 2)
infoGain = baseEntropy - newEntropy #这个feature的infoGain
if (splitInfo == 0): # fix the overflow bug
continue
infoGainRatio = infoGain / splitInfo #这个feature的infoGainRatio
if (infoGainRatio > bestInfoGainRatio): #选择最大的gain ratio
bestInfoGainRatio = infoGainRatio
bestFeature = i #选择最大的gain ratio对应的feature
return bestFeature
4. 划分数据,为下一层计算准备:
def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value: #只看当第i列的值=value时的item
reduceFeatVec = featVec[:axis] #featVec的第i列给除去
reduceFeatVec.extend(featVec[axis+1:])
retDataSet.append(reduceFeatVec)
return retDataSet
5. 多重字典构建树:
def createTree(dataSet, labels):
classList = [example[-1] for example in dataSet] # ['N', 'N', 'Y', 'Y', 'Y', 'N', 'Y']
if classList.count(classList[0]) == len(classList):
# classList所有元素都相等,即类别完全相同,停止划分
return classList[0] #splitDataSet(dataSet, 0, 0)此时全是N,返回N
if len(dataSet[0]) == 1: #[0, 0, 0, 0, 'N']
# 遍历完所有特征时返回出现次数最多的
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet) #0-> 2
# 选择最大的gain ratio对应的feature
bestFeatLabel = labels[bestFeat] #outlook -> windy
myTree = {bestFeatLabel:{}}
#多重字典构建树{'outlook': {0: 'N'
del(labels[bestFeat]) #['temperature', 'humidity', 'windy'] -> ['temperature', 'humidity']
featValues = [example[bestFeat] for example in dataSet] #[0, 0, 1, 2, 2, 2, 1]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:] #['temperature', 'humidity', 'windy']
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
# 划分数据,为下一层计算准备
return myTree
6. 可视化决策树的结果:
dataSet, labels = createDataSet()
labels_tmp = labels[:]
desicionTree = createTree(dataSet, labels_tmp)
treePlotter.createPlot(desicionTree)

【机器学习笔记之二】决策树的python实现的更多相关文章
- [机器学习笔记]主成分分析PCA简介及其python实现
主成分分析(principal component analysis)是一种常见的数据降维方法,其目的是在“信息”损失较小的前提下,将高维的数据转换到低维,从而减小计算量. PCA的本质就是找一些投影 ...
- 机器学习笔记之二-win10+cuda9.1+CUDNN7+Anaconda3+VS2017+tensorflow1.5+opencv3.4
[Tensorflow]环境搭建vs2017+win10+py3.6+cuda9.1+cudnn7+tf1.5 一.安装cuda 9.1+VS2017 一路下一步即可,环境变量cuda会自动配好 ...
- 机器学习算法总结(二)——决策树(ID3, C4.5, CART)
决策树是既可以作为分类算法,又可以作为回归算法,而且在经常被用作为集成算法中的基学习器.决策树是一种很古老的算法,也是很好理解的一种算法,构建决策树的过程本质上是一个递归的过程,采用if-then的规 ...
- python3学习笔记(二):Python初识
一.算法 在开始认真地编程之前,首先来解释下什么是计算机程序设计.简单地说,它就是告诉计算机要做什么.计算机可以做很多事情,但是它不会自己思考,需要我们告诉它具体细节,并且使用计算机能够理解的语言把算 ...
- Coursera 机器学习笔记(二)
主要为第三周课程内容:逻辑回归与正则化 逻辑回归(Logistic Regression) 一.逻辑回归模型引入 分类问题是指尝试预测的是结果是否属于某一个类. 维基百科的定义为:根据已知训练区提供的 ...
- python学习笔记(二)之python简单实践
1 安装python开发环境 Linux环境下自动安装好了python,可以通过以下命令更新到python最新版本. #echo "alias python=/usr/bin/python3 ...
- 吴恩达机器学习笔记(二) —— Logistic回归
主要内容: 一.回归与分类 二.Logistic模型即sigmoid function 三.decision boundary 决策边界 四.cost function 代价函数 五.梯度下降 六.自 ...
- Python学习笔记(二)——列表
Python学习笔记(二)--列表 Python中的列表可以存放任何数据类型 >>> list1 = ['Hello','this','is','GUN',123,['I','Lov ...
- cs229 斯坦福机器学习笔记(一)-- 入门与LR模型
版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/Dinosoft/article/details/34960693 前言 说到机器学习,非常多人推荐的学习资 ...
随机推荐
- 使用juggle简化网络编程
常规的网络编程,在消息处理上大概会采用如下方式 struct msg{ int msg_id; int msg_len; //...msg_info }; 定义如上的消息结构 接收方接收后,按如上的消 ...
- java登录时数据库验证账户密码-mysql
一:连接数据库: package login; import java.sql.*; public class conmysql { String drivername="com.mysql ...
- 微信小程序的开发环境搭建(Windows版本)
前言: 小程序是指微信公众平台小程序,小程序可以帮助开发者快速的开发小程序,小程序可以在微信内被便捷地获取和传播:是一种不需要下载安装即可使用的应用小程序,和原有的三种公众号是并行的体系.2017年1 ...
- Markdown速查手册
之前一直使用简书做笔记,沉浸式的写作环境很棒.然而不知什么时候起,氛围愈发浮躁,软文鸡汤泛滥,离"简"字越来越远. 相比更加喜欢沉稳低调.内涵取胜的博客园.于是乎搬家! 搬家就要丢 ...
- 微信公众平台——token验证php版
这几天开始接触微信公众号的开发,注册这些就不说了,我是先弄了个测试号用着.进入正题 所谓token验证,其实就是微信服务器向自己要用到的服务器url发送一段数据,其中有一个参数$_GET['echho ...
- ftp站点密码破解
启动流光软件,在"F T P 主机"点击鼠标右键选择"编辑 | 添加",然后添加想要利用的那个 F T P 地址,然后在弹出的对话框添加欲利用的主机,FTP 主 ...
- 移动端布局最佳实践(viewport+rem)
通过前几天写的两篇博客(浅谈移动端三大viewport和移动端em和rem区别),我们现在来总结一下如何实现一个最佳方案. 之前在第二篇博客中提到过我们可以使用媒体查询来针对不同设备及做适配,如下图 ...
- Android-重新包装Toast,自定义背景
Android-重新包装Toast,自定义背景 2016-4-27 Android L 算是包装了一个自己使用的小工具. 使用Toast的目的是弹一个提示框.先看一下Toast.makeText方法. ...
- [luogu P3128][USACO15DEC]Max Flow [LCA][树上差分]
题目描述 Farmer John has installed a new system of pipes to transport milk between the stalls in his b ...
- .Net 调用微信公众号扫一扫
1.绑定域名 去微信公众号平台中设置js接口安全域名,要注意的是不填写http://, 只填写域名即可,如 www.baidu.com. 一个月只能修改三次,要谨慎填写. 2.引入JS文件 在页面中引 ...