华电北风吹

天津大学认知计算与应用重点实验室

日期:2015/12/11

高斯判别分析属于生成模型,模型终于学习一个特征-类别的联合概率。

0 多维正态分布

确定一个多维正态分布仅仅须要知道分布的均值向量μ∈Rn×1\mu\in R^{n\times 1}和一个协方差矩阵Σ∈Rn×n\Sigma\in R^{n\times n}.

其概率密度函数例如以下:

p(x;μ,Σ)=1(2π)n/2|Σ|1/2exp(−12(x−μ)TΣ−1(x−μ))(0)p(x;\mu,\Sigma)=\frac{1}{(2\pi)^{n/2}| \Sigma|^{1/2}}exp(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)) \tag{0}

一、高斯判别分析

适用范围:输入特征是连续

模型表述:

y∼Bernoulli(ϕ)(1-1)y\sim Bernoulli(\phi) \tag{1-1}

x|y=0∼N(μ0,Σ)()x|y=0\sim N (\mu_0,\Sigma) \tag{}

x|y=1∼N(μ1,Σ)()x|y=1\sim N(\mu_1,\Sigma) \tag{}

结合公式0能够将公式1-1写为:

p(y)=ϕy(1−ϕ)1−y(1-2)p(y)=\phi^y(1-\phi)^{1-y} \tag{1-2}

p(x|y=0)=1(2π)n/2|Σ|1/2exp(−12(x−μ0)TΣ−1(x−μ0))()p(x|y=0)=\frac{1}{(2\pi)^{n/2}| \Sigma|^{1/2}}exp(-\frac{1}{2}(x-\mu_0)^T\Sigma^{-1}(x-\mu_0)) \tag{}

p(x|y=1)=1(2π)n/2|Σ|1/2exp(−12(x−μ1)TΣ−1(x−μ1))()p(x|y=1)=\frac{1}{(2\pi)^{n/2}| \Sigma|^{1/2}}exp(-\frac{1}{2}(x-\mu_1)^T\Sigma^{-1}(x-\mu_1)) \tag{}

能够看到对于二分类高斯判别分析。模型的參数是ϕ,μ0,μ1,Σ\phi,\mu_0,\mu_1,\Sigma。注意到这里的两个n维正态分布公用了一个协方差矩阵。

对于m个输入样本,有

p(x(i),y(i);ϕ,μ0,μ1,Σ)=p(y(i);ϕ)p(x(i)|y(i);μ,Σ)(1-3)p(x^{(i)},y^{(i)};\phi,\mu_0,\mu_1,\Sigma)=p(y^{(i)};\phi)p(x^{(i)}|y^{(i)};\mu,\Sigma)\tag{1-3}

easy得到对数似然函数例如以下

l(ϕ,μ0,μ1,Σ)=log∏mi=1p(x(i),y(i);ϕ,μ0,μ1,Σ)(1-4)l(\phi,\mu_0,\mu_1,\Sigma)=\log\prod_{i=1}^{m}{p(x^{(i)},y^{(i)};\phi,\mu_0,\mu_1,\Sigma)} \tag{1-4}

求解似然函数最大化得到高斯判别分析的模型參数解形式例如以下:

ϕ=1m∑mi=11{y(i)=1}(1-5)\phi=\frac{1}{m}\sum_{i=1}^{m}{1\{{y^{(i)}}=1\}} \tag{1-5}

μ0=∑mi=11{y(i)=0}x(i)∑mi=11{y(i)=0}()\mu_0=\frac{\sum_{i=1}^{m}{1\{{y^{(i)}}=0\}x^{(i)}}}{\sum_{i=1}^{m}{1\{{y^{(i)}}=0\}}} \tag{}

μ1=∑mi=11{y(i)=1}x(i)∑mi=11{y(i)=1}()\mu_1=\frac{\sum_{i=1}^{m}{1\{{y^{(i)}}=1\}x^{(i)}}}{\sum_{i=1}^{m}{1\{{y^{(i)}}=1\}}} \tag{}

Σ=1m∑mi=1(x(i)−μy(i))(x(i)−μy(i))T()\Sigma=\frac{1}{m}\sum_{i=1}^{m}{(x^{(i)}-\mu_{y^{(i)}})(x^{(i)}-\mu_{y^{(i)}})^T} \tag{}

二、高斯判别分析与逻辑回归

能够easy写出高斯判别分析的预測函数。因为是生成模型。模型存在两种输出p(y=1|x。ϕ,μ0,μ1,Σ)p(y=1|x。\phi,\mu_0,\mu_1,\Sigma)和p(y=0|x;ϕ,μ0,μ1,Σ)p(y=0|x;\phi,\mu_0,\mu_1,\Sigma)。在这里重点关注第一个。

p(y=1|x。ϕ,μ0,μ1,Σ)=p(y=1|x)p(y=1|x)+p(y=0|x)(2-1)p(y=1|x。\phi,\mu_0,\mu_1,\Sigma)=\frac{p(y=1|x)}{p(y=1|x)+p(y=0|x)} \tag{2-1}

经过变换,分解组合等变换操作能够得到例如以下形式:

p(y=1|x。ϕ,μ0,μ1,Σ)=11+e−θTx(2-2)p(y=1|x。\phi,\mu_0,\mu_1,\Sigma)=\frac{1}{1+e^{-\theta^Tx}} \tag{2-2}

注:分子分母同除以分子,消除同类项。系数转化为指数上的指数,矩阵展开相减消除等简单操作就可以得到。

尽管能够得到相似的格式。可是高斯判别分析与逻辑回归仍然存在非常大差别:

1、模型性质:高斯判别分析属于生成模型。逻辑回归属于判别模型

2、p(y=1|x)和p(y=0|x)在逻辑回归中和为1。在高斯判别分析中不存在这个性质。

3、模型如果:高斯判别分析如果样本特征在每一个类别下分别服从于各异的高维正态分布。逻辑回归是类别标签满足伯努利分布如果下的广义线性模型。

$(function () {
$('pre.prettyprint code').each(function () {
var lines = $(this).text().split('\n').length;
var $numbering = $('

    ').addClass('pre-numbering').hide();
    $(this).addClass('has-numbering').parent().append($numbering);
    for (i = 1; i ').text(i));
    };
    $numbering.fadeIn(1700);
    });
    });

ML—高斯判别分析的更多相关文章

  1. [置顶] 生成学习算法、高斯判别分析、朴素贝叶斯、Laplace平滑——斯坦福ML公开课笔记5

    转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9285001 该系列笔记1-5pdf下载请猛击这里. 本篇博客为斯坦福ML公开 ...

  2. 高斯判别分析 Gaussian Discriminant Analysis

    如果在我们的分类问题中,输入特征xx是连续型随机变量,高斯判别模型(Gaussian Discriminant Analysis,GDA)就可以派上用场了. 以二分类问题为例进行说明,模型建立如下: ...

  3. Gaussian discriminant analysis 高斯判别分析

    高斯判别分析(附Matlab实现) 生成学习算法 高斯判别分析(Gaussian Discriminant analysis,GDA),与之前的线性回归和Logistic回归从方法上讲有很大的不同,G ...

  4. 【cs229-Lecture5】生成学习算法:1)高斯判别分析(GDA);2)朴素贝叶斯(NB)

    参考: cs229讲义 机器学习(一):生成学习算法Generative Learning algorithms:http://www.cnblogs.com/zjgtan/archive/2013/ ...

  5. Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯

    (一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解 ...

  6. StanFord ML 笔记 第四部分

    第四部分: 1.生成学习法 generate learning algorithm 2.高斯判别分析 Gaussian Discriminant Analysis 3.朴素贝叶斯 Navie Baye ...

  7. 【Coursera】高斯混合模型

    一.高斯混合模型 软分类算法,即对每一个样本,计算其属于各个分布的概率,概率值最大的就是这个样本所属的分类. 对于训练样本的分布,看成为多个高斯分布加权得到的.其中每个高斯分布即为某一特定的类. 高斯 ...

  8. ML—朴素贝叶斯

    华电北风吹 日期:2015/12/12 朴素贝叶斯算法和高斯判别分析一样同属于生成模型.但朴素贝叶斯算法须要特征条件独立性如果,即样本各个特征之间相互独立. 一.朴素贝叶斯模型 朴素贝叶斯算法通过训练 ...

  9. 生成式学习算法(三)之----高斯判别分析模型(Gaussian Discriminant Analysis ,GDA)

    高斯判别分析模型(Gaussian Discriminant Analysis ,GDA) 当我们分类问题的输入特征$x $为连续值随机变量时,可以用高斯判别分析模型(Gaussian Discrim ...

随机推荐

  1. <template> 标签

    <template> 元素,用于描述一个标准的以 DOM 为基础的方案来实现客户端模板.该模板允许你定义一段可以被转为 HTML 的标记,在页面加载时不生效,但可以在后续进行动态实例化.( ...

  2. Spring AOP高级——源码实现(1)动态代理技术

    在正式进入Spring AOP的源码实现前,我们需要准备一定的基础也就是面向切面编程的核心——动态代理. 动态代理实际上也是一种结构型的设计模式,JDK中已经为我们准备好了这种设计模式,不过这种JDK ...

  3. postgis常用操作手册

    查询所有函数: SELECT * FROM pg_proc; 更新坐标系st_setsrid,查看坐标系:st_srid 创建空间索引: CREATE INDEX [indexname] ON [ta ...

  4. 前端html 中jQuery实现对文本的搜索并把搜索相关内容显示出来

    做项目的时候有这么一个需求,客户信息显示出来后我要搜索查找相关的客户,并把相关的客户信息全部显示出来,因为一个客户全部信息我写在一个div里面  所以显示的时候就是显示整个div.先看看实现的效果: ...

  5. 预加载(图片,css ,js)

    图片预加载 new Image().src = 'http://img1.t.sinajs.cn/t35/skin/skin_008/skin.css'; //新浪(4) 非ie下预加载(js,css ...

  6. 父类清除浮动的原因、(清除浮动代码,置于CSS中方便调用)

    浮动因素在静态网页制作中经常被应用到,比如要让块级元素不独占一行,常常应用设置float的方式来实现.但是应用的时候会发现,设置了子类浮动后,未给父类清除浮动,这样就会造成一下问题: 1.浮动的元素会 ...

  7. 操作系统学习笔记----进程/线程模型----Coursera课程笔记

    操作系统学习笔记----进程/线程模型----Coursera课程笔记 进程/线程模型 0. 概述 0.1 进程模型 多道程序设计 进程的概念.进程控制块 进程状态及转换.进程队列 进程控制----进 ...

  8. android堆栈调试--详细

    1.将ndk中的arm-linux-androideabi-addr2line可执行文件的路径加入配置文件~/.bashrc中,例如: export PATH=$PATH:~/dlna/android ...

  9. javascript执行机制

    文的目的就是要保证你彻底弄懂javascript的执行机制,如果读完本文还不懂,可以揍我. 不论你是javascript新手还是老鸟,不论是面试求职,还是日常开发工作,我们经常会遇到这样的情况:给定的 ...

  10. JAVA基础3——常见关键字解读(2)

    synchronized Java语言的关键字,当它用来修饰一个方法或者一个代码块的时候,能够保证在同一时刻最多只有一个线程执行该段代码. 用法说明 synchronized 关键字,它包括两种用法: ...