华电北风吹

天津大学认知计算与应用重点实验室

日期:2015/12/11

高斯判别分析属于生成模型,模型终于学习一个特征-类别的联合概率。

0 多维正态分布

确定一个多维正态分布仅仅须要知道分布的均值向量μ∈Rn×1\mu\in R^{n\times 1}和一个协方差矩阵Σ∈Rn×n\Sigma\in R^{n\times n}.

其概率密度函数例如以下:

p(x;μ,Σ)=1(2π)n/2|Σ|1/2exp(−12(x−μ)TΣ−1(x−μ))(0)p(x;\mu,\Sigma)=\frac{1}{(2\pi)^{n/2}| \Sigma|^{1/2}}exp(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)) \tag{0}

一、高斯判别分析

适用范围:输入特征是连续

模型表述:

y∼Bernoulli(ϕ)(1-1)y\sim Bernoulli(\phi) \tag{1-1}

x|y=0∼N(μ0,Σ)()x|y=0\sim N (\mu_0,\Sigma) \tag{}

x|y=1∼N(μ1,Σ)()x|y=1\sim N(\mu_1,\Sigma) \tag{}

结合公式0能够将公式1-1写为:

p(y)=ϕy(1−ϕ)1−y(1-2)p(y)=\phi^y(1-\phi)^{1-y} \tag{1-2}

p(x|y=0)=1(2π)n/2|Σ|1/2exp(−12(x−μ0)TΣ−1(x−μ0))()p(x|y=0)=\frac{1}{(2\pi)^{n/2}| \Sigma|^{1/2}}exp(-\frac{1}{2}(x-\mu_0)^T\Sigma^{-1}(x-\mu_0)) \tag{}

p(x|y=1)=1(2π)n/2|Σ|1/2exp(−12(x−μ1)TΣ−1(x−μ1))()p(x|y=1)=\frac{1}{(2\pi)^{n/2}| \Sigma|^{1/2}}exp(-\frac{1}{2}(x-\mu_1)^T\Sigma^{-1}(x-\mu_1)) \tag{}

能够看到对于二分类高斯判别分析。模型的參数是ϕ,μ0,μ1,Σ\phi,\mu_0,\mu_1,\Sigma。注意到这里的两个n维正态分布公用了一个协方差矩阵。

对于m个输入样本,有

p(x(i),y(i);ϕ,μ0,μ1,Σ)=p(y(i);ϕ)p(x(i)|y(i);μ,Σ)(1-3)p(x^{(i)},y^{(i)};\phi,\mu_0,\mu_1,\Sigma)=p(y^{(i)};\phi)p(x^{(i)}|y^{(i)};\mu,\Sigma)\tag{1-3}

easy得到对数似然函数例如以下

l(ϕ,μ0,μ1,Σ)=log∏mi=1p(x(i),y(i);ϕ,μ0,μ1,Σ)(1-4)l(\phi,\mu_0,\mu_1,\Sigma)=\log\prod_{i=1}^{m}{p(x^{(i)},y^{(i)};\phi,\mu_0,\mu_1,\Sigma)} \tag{1-4}

求解似然函数最大化得到高斯判别分析的模型參数解形式例如以下:

ϕ=1m∑mi=11{y(i)=1}(1-5)\phi=\frac{1}{m}\sum_{i=1}^{m}{1\{{y^{(i)}}=1\}} \tag{1-5}

μ0=∑mi=11{y(i)=0}x(i)∑mi=11{y(i)=0}()\mu_0=\frac{\sum_{i=1}^{m}{1\{{y^{(i)}}=0\}x^{(i)}}}{\sum_{i=1}^{m}{1\{{y^{(i)}}=0\}}} \tag{}

μ1=∑mi=11{y(i)=1}x(i)∑mi=11{y(i)=1}()\mu_1=\frac{\sum_{i=1}^{m}{1\{{y^{(i)}}=1\}x^{(i)}}}{\sum_{i=1}^{m}{1\{{y^{(i)}}=1\}}} \tag{}

Σ=1m∑mi=1(x(i)−μy(i))(x(i)−μy(i))T()\Sigma=\frac{1}{m}\sum_{i=1}^{m}{(x^{(i)}-\mu_{y^{(i)}})(x^{(i)}-\mu_{y^{(i)}})^T} \tag{}

二、高斯判别分析与逻辑回归

能够easy写出高斯判别分析的预測函数。因为是生成模型。模型存在两种输出p(y=1|x。ϕ,μ0,μ1,Σ)p(y=1|x。\phi,\mu_0,\mu_1,\Sigma)和p(y=0|x;ϕ,μ0,μ1,Σ)p(y=0|x;\phi,\mu_0,\mu_1,\Sigma)。在这里重点关注第一个。

p(y=1|x。ϕ,μ0,μ1,Σ)=p(y=1|x)p(y=1|x)+p(y=0|x)(2-1)p(y=1|x。\phi,\mu_0,\mu_1,\Sigma)=\frac{p(y=1|x)}{p(y=1|x)+p(y=0|x)} \tag{2-1}

经过变换,分解组合等变换操作能够得到例如以下形式:

p(y=1|x。ϕ,μ0,μ1,Σ)=11+e−θTx(2-2)p(y=1|x。\phi,\mu_0,\mu_1,\Sigma)=\frac{1}{1+e^{-\theta^Tx}} \tag{2-2}

注:分子分母同除以分子,消除同类项。系数转化为指数上的指数,矩阵展开相减消除等简单操作就可以得到。

尽管能够得到相似的格式。可是高斯判别分析与逻辑回归仍然存在非常大差别:

1、模型性质:高斯判别分析属于生成模型。逻辑回归属于判别模型

2、p(y=1|x)和p(y=0|x)在逻辑回归中和为1。在高斯判别分析中不存在这个性质。

3、模型如果:高斯判别分析如果样本特征在每一个类别下分别服从于各异的高维正态分布。逻辑回归是类别标签满足伯努利分布如果下的广义线性模型。

$(function () {
$('pre.prettyprint code').each(function () {
var lines = $(this).text().split('\n').length;
var $numbering = $('

    ').addClass('pre-numbering').hide();
    $(this).addClass('has-numbering').parent().append($numbering);
    for (i = 1; i ').text(i));
    };
    $numbering.fadeIn(1700);
    });
    });

ML—高斯判别分析的更多相关文章

  1. [置顶] 生成学习算法、高斯判别分析、朴素贝叶斯、Laplace平滑——斯坦福ML公开课笔记5

    转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9285001 该系列笔记1-5pdf下载请猛击这里. 本篇博客为斯坦福ML公开 ...

  2. 高斯判别分析 Gaussian Discriminant Analysis

    如果在我们的分类问题中,输入特征xx是连续型随机变量,高斯判别模型(Gaussian Discriminant Analysis,GDA)就可以派上用场了. 以二分类问题为例进行说明,模型建立如下: ...

  3. Gaussian discriminant analysis 高斯判别分析

    高斯判别分析(附Matlab实现) 生成学习算法 高斯判别分析(Gaussian Discriminant analysis,GDA),与之前的线性回归和Logistic回归从方法上讲有很大的不同,G ...

  4. 【cs229-Lecture5】生成学习算法:1)高斯判别分析(GDA);2)朴素贝叶斯(NB)

    参考: cs229讲义 机器学习(一):生成学习算法Generative Learning algorithms:http://www.cnblogs.com/zjgtan/archive/2013/ ...

  5. Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯

    (一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解 ...

  6. StanFord ML 笔记 第四部分

    第四部分: 1.生成学习法 generate learning algorithm 2.高斯判别分析 Gaussian Discriminant Analysis 3.朴素贝叶斯 Navie Baye ...

  7. 【Coursera】高斯混合模型

    一.高斯混合模型 软分类算法,即对每一个样本,计算其属于各个分布的概率,概率值最大的就是这个样本所属的分类. 对于训练样本的分布,看成为多个高斯分布加权得到的.其中每个高斯分布即为某一特定的类. 高斯 ...

  8. ML—朴素贝叶斯

    华电北风吹 日期:2015/12/12 朴素贝叶斯算法和高斯判别分析一样同属于生成模型.但朴素贝叶斯算法须要特征条件独立性如果,即样本各个特征之间相互独立. 一.朴素贝叶斯模型 朴素贝叶斯算法通过训练 ...

  9. 生成式学习算法(三)之----高斯判别分析模型(Gaussian Discriminant Analysis ,GDA)

    高斯判别分析模型(Gaussian Discriminant Analysis ,GDA) 当我们分类问题的输入特征$x $为连续值随机变量时,可以用高斯判别分析模型(Gaussian Discrim ...

随机推荐

  1. linq 在查询表达式中处理 null 值

    此示例显示如何在源集合中处理可能的 null 值. IEnumerable<T> 等对象集合可包含值为 null 的元素. 如果源集合为 null 或包含值为 null 的元素,并且查询不 ...

  2. IE (6-11)版本,在使用iframe的框架时,通过a标签javascript:; 和js跳转parent.location的时候 出现在新页面打开的情况

    问题描述: 使用iframe的情况下,在子框架中,使用如下形式的跳转: <a href="javascript:;" onclick="parent.locatio ...

  3. C#中结构体定义并转换字节数组

    最近的项目在做socket通信报文解析的时候,用到了结构体与字节数组的转换:由于客户端采用C++开发,服务端采用C#开发,所以双方必须保证各自定义结构体成员类型和长度一致才能保证报文解析的正确性,这一 ...

  4. 深度学习之seq2seq模型以及Attention机制

    RNN,LSTM,seq2seq等模型广泛用于自然语言处理以及回归预测,本期详解seq2seq模型以及attention机制的原理以及在回归预测方向的运用. 1. seq2seq模型介绍 seq2se ...

  5. .net中LAMBDA表达式常用写法

    这里主要是将数据库中的常用操作用LAMBDA表达式重新表示了下,用法不多,但相对较常用,等有时间了还会扩展,并将查询语句及LINQ到时也一并重新整理下: 1.select语句:books.Select ...

  6. Spring 4 MVC example with Maven

    In this tutorial, we show you a Spring 4 MVC example, using Maven build tool. Technologies used : Sp ...

  7. enote笔记法(2)——why的使用

    章节:why的使用 用法: why 概念|词汇(比概念更一般的形式的keyword)|短语|句子 用法1: why 概念|why keyword([比概念更一般的形式的keyword]) “why 概 ...

  8. web-php绕过

    0x01.web-PHP的悖论1 题目: 链接:http://game.sycsec.com:2009/10111.php 解题思路: 1.首先,web对于选择二进制方向的我这个菜鸡绝对是十分懵逼的, ...

  9. listview相关代码整理

    虽然listview已经慢慢被替代了,  不过还是整理下 , 留作纪念吧 /** * 获取 listview 实际滚动的距离. [ 相对于listview的第一个项目左上角.] * * @return ...

  10. C#对SQLite、Access数据库操作的封装,很好用的~

    1.对SQLite的封装: using System; using System.Collections.Generic; using System.Linq; using System.Text; ...