Painter's Problem

题意:给一个n*n(1 <= n <= 15)具有初始颜色(颜色只有yellow&white两种,即01矩阵)的square染色,每次对一个方格染成黄色时,同时会把周围的方格也染成黄色。(这和1222的开关一样的关联关系)问最后可以将square全部染成黄色的最小染色方格数?

思路:

1.直接预处理出增广矩阵,和1222不同的是里面有最优解的条件,贪心的思想是把自由变元看成是没染色的,但是其他非自由变元(除去自由维度之外的变量)是可以通过自由变元的取值来确定的(在poj 1753中WA了很久,有是一个坑), 但是这道题确实可以不用枚举过。。

2.本题的var = 15*15,变量的个数很大,直接枚举自由变元会不会导致枚举TLE?或者二进制枚举爆数位?这就转化为了方程自由变元的最大个数?如果只考虑高斯消元的全部变量,虽然可以从之间的关联来看会极大的减小自由度,却依旧难证明。但是如果从枚举第一行,就可以递推出全部结果就知道其实是一个一维的自由度,不超过15~~

code1:直接将自由元看成0...(也能A,不够严谨)0ms..

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<time.h>
using namespace std;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define rep_0(i,r,l) for(int i = (r);i > (l);i--)
#define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a)) int dir[][] = {{,,,-},{,,-,}};
int a[][];
int equ,var;
int x[],free_var[];
void debug()
{
puts("********");
int i,j;
rep0(i,,equ){
rep1(j,,var)
cout<<a[i][j]<<" ";
cout<<endl;
}puts("********");
}
int Guass()
{
int i,j,k,row,col,cnt = ;
for(row = ,col = ;row < equ && col < var;row++,col++){
int mx = row;
rep0(j,row+,equ)
if(abs(a[j][col]) > abs(a[mx][col])) mx = j;
if(a[mx][col] == ){
row--; // 行不变;不能通过这里记录自由变元的个数,只能记录没用的col
free_var[col] = ++cnt;//记录自由变元的标号;
continue;
}
if(mx != row)
rep1(k,col,var)
swap(a[row][k],a[mx][k]);
rep0(j,row+,equ){
if(a[j][col]){
rep1(k,col,var)
a[j][k] ^= a[row][k];
}
}
}
//debug();
int use_equ = row; //有用的方程数即能确定的变元的个数
rep0(i,use_equ,equ)
if(a[i][var] != ) return -; //无解
//if(use_equ < var) return var - use_equ;//row表示有用的方程数方程,但是要在判断出有解的前提下才能说有多组解;
rep_1(i,use_equ-,){
x[i] = a[i][var];
rep0(j,i+,use_equ)
x[i] ^= (a[i][j] && x[j]); //第j个灯会影响到第i盏灯,同时第j盏灯也会亮
}
}
void init(int n)
{
int i,j,k;
rep0(i,,n)
rep0(j,,n){
int id = i*n+j;
a[id][id] = ;
rep0(k,,){
int nx = i + dir[][k] ,ny = j + dir[][k];
if(nx < || nx >= n || ny < || ny >= n) continue;
a[nx*n+ny][id] = ;
}
}
}
int main()
{
int T,n,i;
cin>>T;
while(T--){
MS0(x);MS0(a);MS0(free_var);
scanf("%d",&n);
equ = var = n*n ;
rep0(i,,var){
char c = getchar();
if(c == 'w') a[i][var] = ;
else if(c == 'y') a[i][var] = ;
else i--;
}
init(n);
int ret = Guass();
if(ret == -) puts("inf");
else{
int ans = ;
rep0(i,,var)if(free_var[i] == )
ans += x[i];
printf("%d\n",ans);
}
}
return ;
}

code2:枚举自由变元:(16ms)

注意:含有自由变元的式子也是等式。。就是指开始枚举出了自由变量的个数,在后面会不会重复计算。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<time.h>
using namespace std;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define rep_0(i,r,l) for(int i = (r);i > (l);i--)
#define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a))
#define inf 0x3f3f3f3f
int dir[][] = {{,,,-},{,,-,}};
int a[][];
int equ,var;
int x[],free_var[];
void debug()
{
puts("********");
int i,j;
rep0(i,,equ){
rep1(j,,var)
cout<<a[i][j]<<" ";
cout<<endl;
}puts("********");
}
int Guass()
{
int i,j,k,row,col,cnt = ;
for(row = ,col = ;row < equ && col < var;row++,col++){
int mx = row;
rep0(j,row+,equ)
if(abs(a[j][col]) > abs(a[mx][col])) mx = j;
if(a[mx][col] == ){
row--; // 行不变;不能通过这里记录自由变元的个数,只能记录没用的col
free_var[cnt++] = col;//记录自由变元的标号;
continue;
}
if(mx != row)
rep1(k,col,var)
swap(a[row][k],a[mx][k]);
rep0(j,row+,equ){
if(a[j][col]){
rep1(k,col,var)
a[j][k] ^= a[row][k];
}
}
}
//debug();
//row即为有用的方程数即能确定的变元的个数
rep0(i,row,equ)
if(a[i][var] != ) return -; //无解
//枚举自由变元,row表示有用的方程数方程,但是要在判断出有解的前提下才能说有多组解;
//if(row < var) return var - row; //当不需要枚举时,直接返回自由变元的个数
int ans = inf,tot = <<(var - row);
rep0(i,,tot){
int cnt = ,tmp = i;
rep0(j,,var - row){
x[free_var[j]] = (tmp&);
if(x[free_var[j]]) cnt++;//**
tmp >>= ;
}
rep_1(i,row-,){ //自由变元不会相互影响,所以可以不分
x[i] = a[i][var];//现在赋为a[i][var],若为自由变元之后还是会等于0,不会重复计算;
rep0(j,i+,equ){
x[i] ^= (a[i][j] && x[j]); //第j个灯会影响到第i盏灯,同时第j盏灯也会亮
}
if(x[i]) cnt++;
}
ans = min(ans,cnt);
}
return ans;
}
void init(int n)
{
int i,j,k;
rep0(i,,n)
rep0(j,,n){
int id = i*n+j;
a[id][id] = ;
rep0(k,,){
int nx = i + dir[][k] ,ny = j + dir[][k];
if(nx < || nx >= n || ny < || ny >= n) continue;
a[nx*n+ny][id] = ;
}
}
}
int main()
{
int T,n,i;
cin>>T;
while(T--){
MS0(x);MS0(a);MS0(free_var);
scanf("%d",&n);
equ = var = n*n ;
rep0(i,,var){
char c = getchar();
if(c == 'w') a[i][var] = ;
else if(c == 'y') a[i][var] = ;
else i--;
}
init(n);
int ret = Guass();
if(ret == -) puts("inf");
else printf("%d\n",ret);
}
return ;
}

poj 1681 Painter's Problem的更多相关文章

  1. POJ 1681 Painter's Problem 【高斯消元 二进制枚举】

    任意门:http://poj.org/problem?id=1681 Painter's Problem Time Limit: 1000MS   Memory Limit: 10000K Total ...

  2. OpenJudge 2813 画家问题 / Poj 1681 Painter's Problem

    1.链接地址: http://bailian.openjudge.cn/practice/2813 http://poj.org/problem?id=1681 2.题目: 总时间限制: 1000ms ...

  3. POJ 1681 Painter's Problem(高斯消元+枚举自由变元)

    http://poj.org/problem?id=1681 题意:有一块只有黄白颜色的n*n的板子,每次刷一块格子时,上下左右都会改变颜色,求最少刷几次可以使得全部变成黄色. 思路: 这道题目也就是 ...

  4. POJ 1681 Painter's Problem (高斯消元)

    题目链接 题意:有一面墙每个格子有黄白两种颜色,刷墙每次刷一格会将上下左右中五个格子变色,求最少的刷方法使得所有的格子都变成yellow. 题解:通过打表我们可以得知4*4的一共有4个自由变元,那么我 ...

  5. POJ 1681 Painter's Problem (高斯消元 枚举自由变元求最小的步数)

    题目链接 题意: 一个n*n 的木板 ,每个格子 都 可以 染成 白色和黄色,( 一旦我们对也个格子染色 ,他的上下左右 都将改变颜色): 给定一个初始状态 , 求将 所有的 格子 染成黄色 最少需要 ...

  6. POJ 1681 Painter's Problem [高斯消元XOR]

    同上题 需要判断无解 需要求最小按几次,正确做法是枚举自由元的所有取值来遍历变量的所有取值取合法的最小值,然而听说数据太弱自由元全0就可以就水过去吧.... #include <iostream ...

  7. poj 1681 Painter&#39;s Problem(高斯消元)

    id=1681">http://poj.org/problem? id=1681 求最少经过的步数使得输入的矩阵全变为y. 思路:高斯消元求出自由变元.然后枚举自由变元,求出最优值. ...

  8. POJ 1222 POJ 1830 POJ 1681 POJ 1753 POJ 3185 高斯消元求解一类开关问题

    http://poj.org/problem?id=1222 http://poj.org/problem?id=1830 http://poj.org/problem?id=1681 http:// ...

  9. Painter's Problem (高斯消元)

    There is a square wall which is made of n*n small square bricks. Some bricks are white while some br ...

随机推荐

  1. Wpf OpenFileDialog

                      Microsoft.Win32.OpenFileDialog openFileDialog1 = new Microsoft.Win32.OpenFileDialo ...

  2. [Webpack 2] Ensure all source files are included in test coverage reports with Webpack

    If you’re only instrumenting the files in your project that are under test then your code coverage r ...

  3. careercup-递归和动态规划 9.2

    9.2 设想有个机器人坐在X*Y网格的左上角,只能向右.向下移动.机器人从(0,0)到(X,Y)有多少种走法? 进阶: 假设有些点为“禁区”,机器人不能踏足.设计一种算法,找到一条路径,让机器人从左上 ...

  4. VMWARE FUSION 6 KEY

    Serial number: VZ15K-DKD85-M85EP-W4P79-XAAU4 Serial number: VU50A-2UW9Q-M88UY-D7MQX-ZG8X8 Serial num ...

  5. 图解如何用U盘重装系统

    第一类方法: 原生U盘安装,本工具制作完的U盘启动菜单含Windows7操作系统安装功能,使用本功能可以将Win7系统完美移植到你的U盘中.本功能不用进PE不用虚拟光驱,不受FAT32和NTFS文件系 ...

  6. TCP三次握手/四次握手

    TCP连接三次握手 首先Client端发送连接请求报文,Server段接受连接后回复ACK报文,并为这次连接分配资源.Client端接收到ACK报文后也向Server段发生ACK报文,并分配资源,这样 ...

  7. ThinkPHP函数详解:cache方法

    cache方法是3.0版本开始新增的缓存管理方法.注意:3.1.2版本后因cache方法并入原S方法,所以cache方法不再建议使用,用S方法即可. cache 用于缓存设置.获取.删除操作 用法ca ...

  8. js获得文件根目录

    function getRootPath(){ //获取当前网址,如: http://localhost:8083/proj/meun.jsp var curWwwPath = window.docu ...

  9. 特殊浮点值 Java

    // Finite +-0.0 System.out.println("Finite with +-0.0:"); System.out.println("Finite ...

  10. 学习重点:1、金典的设计模式在实际中应用2、JVM原理3、jui源代码

    学习重点:1.金典的设计模式在实际中应用 2.JVM原理 3.jui源代码