面试题:实现LRUCache::Least Recently Used的缩写,意思是最近最少使用,它是一种Cache替换算法
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get
and set
.
get(key)
- Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.set(key, value)
- Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
- 题目大意:为LRU Cache设计一个数据结构,它支持两个操作:
1)get(key):如果key在cache中,则返回对应的value值,否则返回-1
2)set(key,value):如果key不在cache中,则将该(key,value)插入cache中(注意,如果cache已满,则必须把最近最久未使用的元素从cache中删除);如果key在cache中,则重置value的值。
- 解题思路:题目让设计一个LRU Cache,即根据LRU算法设计一个缓存。在这之前需要弄清楚LRU算法的核心思想,LRU全称是Least
Recently Used,即最近最久未使用的意思。在操作系统的内存管理中,有一类很重要的算法就是内存页面置换算法(包括FIFO,LRU,LFU等几种常见页面置换算法)。事实上,Cache算法和内存页面置换算法的核心思想是一样的:都是在给定一个限定大小的空间的前提下,设计一个原则如何来更新和访问其中的元素。下面说一下LRU算法的核心思想,LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小。也就是说,当限定的空间已存满数据时,应当把最久没有被访问到的数据淘汰。
而用什么数据结构来实现LRU算法呢?可能大多数人都会想到:用一个数组来存储数据,给每一个数据项标记一个访问时间戳,每次插入新数据项的时候,先把数组中存在的数据项的时间戳自增,并将新数据项的时间戳置为0并插入到数组中。每次访问数组中的数据项的时候,将被访问的数据项的时间戳置为0。当数组空间已满时,将时间戳最大的数据项淘汰。
这种实现思路很简单,但是有什么缺陷呢?需要不停地维护数据项的访问时间戳,另外,在插入数据、删除数据以及访问数据时,时间复杂度都是O(n)。
那么有没有更好的实现办法呢?
那就是利用链表和hashmap。当需要插入新的数据项的时候,如果新数据项在链表中存在(一般称为命中),则把该节点移到链表头部,如果不存在,则新建一个节点,放到链表头部,若缓存满了,则把链表最后一个节点删除即可。在访问数据的时候,如果数据项在链表中存在,则把该节点移到链表头部,否则返回-1。这样一来在链表尾部的节点就是最近最久未访问的数据项。
总结一下:根据题目的要求,LRU Cache具备的操作:
1)set(key,value):如果key在hashmap中存在,则先重置对应的value值,然后获取对应的节点cur,将cur节点从链表删除,并移动到链表的头部;若果key在hashmap不存在,则新建一个节点,并将节点放到链表的头部。当Cache存满的时候,将链表最后一个节点删除即可。
2)get(key):如果key在hashmap中存在,则把对应的节点放到链表头部,并返回对应的value值;如果不存在,则返回-1。
package com.Netesay.interview; import java.util.HashMap;
import java.util.Map; /**
* @Author: weblee
* @Email: likaiweb@163.com
* @Blog: http://www.cnblogs.com/lkzf/
* @Time: 2014年10月24日下午6:29:40
*
************* function description ***************
*
****************************************************
*/ public class LRUCache {
Map<Integer, CacheNode> cacheMap;
CacheNode head, tail;
int capacity; //使用双向链表和map,map将k对应与链表的节点
//链表里保存k和value
public LRUCache(int capacity) {
this.capacity = capacity; cacheMap = new HashMap<Integer, CacheNode>(capacity); head = new CacheNode(-1, -1);
tail = new CacheNode(1, 1); head.next = tail;
tail.pre = head;
} public int get(int key) {
if (cacheMap.containsKey(key)) {
CacheNode node = (CacheNode)cacheMap.get(key); put2Head(node); return node.value;
} else {
return -1;
}
} public void set(int key, int value) {
if (cacheMap.containsKey(key)) {
CacheNode p = cacheMap.get(key); p.value = value; put2Head(p);
} else if(cacheMap.size() < capacity) {
CacheNode node = new CacheNode(key, value);
put2Head(node);
cacheMap.put(key, node);
} else {
CacheNode p = new CacheNode(key, value);
put2Head(p);
cacheMap.put(key, p); int tmpKey = removeEnd();
cacheMap.remove(tmpKey);
}
} private void put2Head(CacheNode p) {
if (p.next != null && p.pre != null) {
p.pre.next = p.next;
p.next.pre = p.pre;
} p.pre = head;
p.next = head.next;
head.next.pre = p;
head.next = p;
} private int removeEnd() {
CacheNode p = tail.pre;
tail.pre.pre.next = tail;
tail.pre = p.pre; p.pre = null;
p.next = null; return p.key;
}
} class CacheNode {
int key;
int value; CacheNode pre;
CacheNode next; public CacheNode(int key, int value) {
this.key = key;
this.value = value;
}
}
面试题:实现LRUCache::Least Recently Used的缩写,意思是最近最少使用,它是一种Cache替换算法的更多相关文章
- lettcode 上的几道哈希表与链表组合的数据结构题
目录 LRU缓存 LFU缓存 全O(1)的数据结构 lettcode 上的几道哈希表与链表组合的数据结构题 下面这几道题都要求在O(1)时间内完成每种操作. LRU缓存 LRU是Least Recen ...
- 操作系统之LRU算法 C语言链表实现
LRU是Least Recently Used的缩写,即最近最少使用,是一种常用的页面置换算法,选择最近最久未使用的页面予以淘汰.该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历 ...
- 听说同学你搞不懂Java的LinkedHashMap,可笑
先看再点赞,给自己一点思考的时间,微信搜索[沉默王二]关注这个有颜值却假装靠才华苟且的程序员.本文 GitHub github.com/itwanger 已收录,里面还有我精心为你准备的一线大厂面试题 ...
- 【python刷题】LRU
什么是LRU? LRU是Least Recently Used的缩写,即最近最少使用,是一种常用的页面置换算法,选择最近最久未使用的页面予以淘汰.该算法赋予每个页面一个访问字段,用来记录一个页面自上次 ...
- JS 实现一个 LRU 算法
LRU 是 Least Recently Used 的缩写,即最近最少使用,是一种常用的页面置换算法,选择内存中最近最久未使用的页面予以淘汰. 可用的 NodeJS 库见node-lru-cache ...
- Javascript 手写 LRU 算法
LRU 是 Least Recently Used 的缩写,即最近最少使用.作为一种经典的缓存策略,它的基本思想是长期不被使用的数据,在未来被用到的几率也不大,所以当新的数据进来时我们可以优先把这些数 ...
- 什么是LRU缓存淘汰机制
LRU是Least Recently Used的缩写,即最近最少使用,是一种常用的页面置换算法,选择最近最久未使用的页面予以淘汰.该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历 ...
- Android——LruCache源码解析
以下针对 Android API 26 版本的源码进行分析. 在了解LruCache之前,最好对LinkedHashMap有初步的了解,LruCache的实现主要借助LinkedHashMap.Lin ...
- 常见面试题之操作系统中的LRU缓存机制实现
LRU缓存机制,全称Least Recently Used,字面意思就是最近最少使用,是一种缓存淘汰策略.换句话说,LRU机制就是认为最近使用的数据是有用的,很久没用过的数据是无用的,当内存满了就优先 ...
随机推荐
- AMQP与QPID简介
国内私募机构九鼎控股打造APP,来就送 20元现金领取地址:http://jdb.jiudingcapital.com/phone.html内部邀请码:C8E245J (不写邀请码,没有现金送)国内私 ...
- visual studio 2015提示IE10未安装
将以下代码写入文本: @ECHO OFF :IE10HACK REG ADD "HKLM\SOFTWARE\Wow6432Node\Microsoft\Internet Explorer&q ...
- Centos下的IO监控与分析
近期要在公司内部做个Linux IO方面的培训, 整理下手头的资料给大家分享下 各种IO监视工具在Linux IO 体系结构中的位置 源自 Linux Performance and Tuni ...
- 在含有null值的复杂类的集合(Collection)中取最大值
在日常编程中,经常遇到要在一组复杂类的集合(Collection)中做比较.取最大值或最小值. 举个最简单的例子,我们要在一个如下结构的集合中选取包含最大值的元素: public class Clas ...
- 调用iframe 中的js[兼容各种浏览器]
*chrome浏览器需要在服务器环境中测试 <!DOCTYPE html> <html> <head> <meta http-equiv="cont ...
- Java基础知识强化之IO流笔记41:字符流缓冲流之复制文本文件案例02(使用 [ newLine() / readLine() ] )(重要)
1. 使用字符流缓冲流的特殊功能 [ newLine() / readLine() ] 需求:把当前项目目录下的a.txt内容复制到当前项目目录下的b.txt中 数据源: a.txt -- 读取数据 ...
- mysq优化参数详解:innodb_buffer_pool_size,innodb_file_per_table
Mysql配置参数: thread_pool:如果支持的话,使用线程池 innodb_buffer_pool_size:物理内存50%-70%最高80%独立实例,多实例:60% innodb_flus ...
- Import user's Environment path into Linux cron task
How to use "cron" to create scheduled task Minimum time cycle: 1 minute Use crontab -e edi ...
- 关于FPGA异步时钟采样--结绳法的点点滴滴
一.典型方法 典型方法即双锁存器法,第一个锁存器可能出现亚稳态,但是第二个锁存器出现亚稳态的几率已经降到非常小,双锁存器虽然不能完全根除亚稳态的出现(事实上所有电路都无法根除,只能尽可能降低亚稳态的出 ...
- Objective-c中的设计模式
如果你会写算法,又理解设计模式,你就牛逼了.后面一段时间我会尽可能易懂的描述来讲解iOS中的设计模式,并且每个设计模式都会有对应的demo:https://github.com/goodyboy6/D ...