MTLD -词汇复杂度的指标
论文:
MTLD, vocd-D, and HD-D: A validation study of sophisticated approaches
to lexical diversity assessment
地址:
https://link.springer.com/content/pdf/10.3758%2FBRM.42.2.381.pdf
LD Lexical diversity
TTR type–token ratio
缺点是文本长度变化敏感
vocd-D :也是文本长度的函数
CONSIDERATIONS IN THE ASSESSMENT OF LEXICAL DIVERSITY
Text Length
LD的第一个缺点就是对文本长度敏感。the gradual decrease in type count can be an indication of the thematic saturation of a text or corpus . That is, when a text reaches the point at which no new types are being encountered, we can say that the text is (fully) repre- sentative of the word types that are indicative of that text’s theme ~ 作用就是it allows researchers greater confidence that their corpora comprise texts of a sufficient length to represent suitably their linguistic function. ~MTLD is a notion closely related to thematic saturation
Textual Homogeneity文本同质性
LD的第二个缺点就是LD指标会被看做对textual homogeneity的假设的描述。homogeneity assumption可以看做一个文本中类型的分布,也就是说,不同的修辞和策略使得文本各个部分有不同的等级。每个文本都有一个structure,每个structure都有一个修辞目的,这个目的可以在文本中用多种修辞形式表示,但是没有任何一个可以表示文本的全部。
Sequential and Nonsequential Analysis Processing
For example, it has the advantage of avoiding local cluster- ing of content words, which Malvern et al. (2004) argued may lead to a distorted view of the overall text. Landauer, Laham, Rehder, and Schreiner (1997) went even further, claiming that there may be little benefit to word order when it comes to deriving meaning from texts.
INDICES OF LEXICAL DIVERSITY
vocd-D
The calculation of vocd-D is the result of a series of ran- dom text samplings. The approach begins its calculation by taking from the text 100 random samples of 35 tokens. The TTR for each of these samples is calculated, and the mean TTR is stored. The same procedure is then repeated for samples from 36 to 50 tokens. An empirical TTR curve is then created from the means of each of these samples.
HD-D
The hypergeometric distribution represents the prob- ability of drawing (without replacement) a certain number of tokens of a particular type from a sample of a particu- lar size. The way we have used this distribution for our own HD-D index is to calculate, for each lexical type in a text, the probability of encountering any of its tokens in a random sample of 42 words drawn from the text.3 The probabilities for all lexical types in the text are then added together, and the sum is used as an index of the text’s LD.
Other LD Indices Used in This Study
Log correction.
Because the text length problem of LD is related to frequency, log values have long been used as an LD corrective factor .
Frequency correction.
A second approach to correct- ing for the text length effect is the frequency distribution of types.
For example, consider the sentence The friendly man liked both the big dog and the little dog, which contains nine types and 12 tokens, and then consider the sentence The friendly man, whom the big dog liked, liked a little dog, which also contains nine types and 12 tokens. Note that the first sentence contains 3 tokens of the type the, whereas the second sentence contains only 2 tokens of the type the; however, for the second sentence, the word liked has a frequency of 2, whereas it is just 1 in the first sentence.
Whereas vocd-D is deter- mined by the sums of probabilities of encountering each type in the text in sample sizes from 35 to 50 tokens, K is determined by the sums of probabilities of encountering each type in the text when the sample size is set to just 2 words.
MTLD
Processing MTLD
MTLD is an index of a text’s LD, evaluated sequen- tially. It is calculated as the mean length of sequential word strings in a text that maintain a given TTR value (here, .720). During the calculation process, each word of the text is evaluated sequentially for its TTR. For example, . . . of (1.00) the (1.00) people (1.00) by (1.00) the (.800) people (.667) for (.714) the (.625) people (.556) . . . and so forth. However, when the default TTR factor size value (here, .720) is reached, the factor count increases by a value of 1, and the TTR evaluations are reset. Thus, given the previous example, MTLD would execute . . . of (1.00) the (1.00) people (1.00) by (1.00) the (.800) people (.667) |||FACTORS FACTORS 1||| for (1.00) the (1.00) peo- ple (1.00) . . . and so forth.
Forward and Reverse Processing
之所以计算一个前向的一个后向的,是因为如果只从前往后计算的话,segmentation sizes 的不同会导致结果的variation很大
Calculation of MTLD Value
The total number of words in the text is divided by the total factor count. For example, if the text 340 words and the factor count 4.404, then the MTLD value is 77.203. Two such MTLD values are calculated, one for forward processing and one for reverse processing. The mean of the two values is the final MTLD value.
MTLD -词汇复杂度的指标的更多相关文章
- 精通Web Analytics 2.0 (5) 第三章:点击流分析的奇妙世界:指标
精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第三章:点击流分析的奇妙世界:指标 新的Web Analytics 2.0心态:搞定它.新的闪亮系列工具:是的.准备好了吗?当然 ...
- 通过 Visual Studio 的“代码度量值”来改进代码质量
1 软件度量值指标 1.1 可维护性指数 表示源代码的可维护性,数值越高可维护性越好.该值介于0到100之间.绿色评级在20到100之间,表明该代码具有高度的可维护性:黄色评级在10到19之间,表示该 ...
- R语言︱SNA-社会关系网络—igraph包(中心度、中心势)(二)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- SNA社会关系网络分析中,关键的就是通过一些指 ...
- 通过Visual Studio 的“代码度量值”来改进代码质量
1 软件度量值指标 1.1 可维护性指数 表示源代码的可维护性,数值越高可维护性越好.该值介于0到100之间.绿色评级在20到100之间,表明该代码具有高度的可维护性:黄色评级在10到19之间,表示该 ...
- 模型监控指标- 混淆矩阵、ROC曲线,AUC值,KS曲线以及KS值、PSI值,Lift图,Gain图,KT值,迁移矩阵
1. 混淆矩阵 确定截断点后,评价学习器性能 假设训练之初以及预测后,一个样本是正例还是反例是已经确定的,这个时候,样本应该有两个类别值,一个是真实的0/1,一个是预测的0/1 TP(实际为正预测为正 ...
- TensorFlow深度学习笔记 循环神经网络实践
转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 加 ...
- A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification-paper
https://github.com/mounicam/lexical_simplification 提供了SimplePPDBpp: SimplePPDB++ resource consisting ...
- 1+1>2:MIT&IBM提出结合符号主义和连接主义的高效、准确新模型
自人工智能的概念提出以来,关于符号主义和连接主义的争论就不绝于耳.究竟哪一种方式可以实现更好的人工智能?这一问题目前还没有定论.深度学习的快速发展让我们看到连接主义在构建 AI 系统中的优势,但其劣势 ...
- 「视频直播技术详解」系列之七:直播云 SDK 性能测试模型
关于直播的技术文章不少,成体系的不多.我们将用七篇文章,更系统化地介绍当下大热的视频直播各环节的关键技术,帮助视频直播创业者们更全面.深入地了解视频直播技术,更好地技术选型. 本系列文章大纲如下: ...
随机推荐
- python之路-----前端之css
本篇内容 CSS 语法 css的四种引入方式 css选择器 css属性操作 Caution! 后台管理布局 css响应式布局 一.CSS语法 CSS 规则由两个主要的部分构成:选择器,以及一条或多条声 ...
- python之路-python2.x与python3.x区别
Python崇尚优美.清晰.简单,是一个优秀并广泛使用的语言. Python2.x 与 Python3.x的区别: python2.x:源码混乱,重复代码较多,冗余. python3.x:源码规范,崇 ...
- JavaScript “函数重载”
函数重载(function overloading)必须依赖两件事情:判断传入参数数量的能力和判断传入参数类型的能力. JavaScript的每个函数都带有一个仅在这个函数范围内作用的变量argume ...
- SQL-54 查找排除当前最大、最小salary之后的员工的平均工资avg_salary。
题目描述 查找排除当前最大.最小salary之后的员工的平均工资avg_salary.CREATE TABLE `salaries` ( `emp_no` int(11) NOT NULL,`sala ...
- CentOS7.4+OpenStack-Queens版本部署
一.准备工作.网络选择NAT 创建两台虚拟机:linux-node1.linux-node2 node1: 修改主机名 [root@localhost ~]# hostnamectl set-host ...
- webservice接口,用Soapui
webservice接口怎么测试呢,他不需要你在拼报文了,会给一个webservice的地址,或者wsdl文件,直接在soapui导入,就可以看到这个webservice里面的所有接口,也有报文,直接 ...
- response导出Excel(一个新手的记录,可以时常查看,以免自己忘记)
HttpResponse response = HttpContext.Current.Response; response.ContentEncoding = System.Text.Encodi ...
- win10安装pytorch
安装gpu版本的pytorch需要三个东西:pytorch(torchvision).cuda.cudnn 相信大家都安装过了anaconda,就不介绍anaconda的安装了 1.安装cuda:从官 ...
- java 第三周作业
1.P132分析: long before = System.currentTimeMillis(); //返回当前的计算机时间,时间的表达格式为当前计算机时间和GMT时间(格林威治时间)1970年1 ...
- SMS PDU编码数据串格式分析
PDU协议数据单元详细介绍 PDU 相当于一个数据包,它由构成消息(SMS)的信息组成.作为一种数据单元,它必须包含源/目的地址.保护(有效)时间.数据格式.协议类型和正文,正文长度可达140字节,它 ...