MTLD -词汇复杂度的指标
论文:
MTLD, vocd-D, and HD-D: A validation study of sophisticated approaches
to lexical diversity assessment
地址:
https://link.springer.com/content/pdf/10.3758%2FBRM.42.2.381.pdf
LD Lexical diversity
TTR type–token ratio
缺点是文本长度变化敏感
vocd-D :也是文本长度的函数
CONSIDERATIONS IN THE ASSESSMENT OF LEXICAL DIVERSITY
Text Length
LD的第一个缺点就是对文本长度敏感。the gradual decrease in type count can be an indication of the thematic saturation of a text or corpus . That is, when a text reaches the point at which no new types are being encountered, we can say that the text is (fully) repre- sentative of the word types that are indicative of that text’s theme ~ 作用就是it allows researchers greater confidence that their corpora comprise texts of a sufficient length to represent suitably their linguistic function. ~MTLD is a notion closely related to thematic saturation
Textual Homogeneity文本同质性
LD的第二个缺点就是LD指标会被看做对textual homogeneity的假设的描述。homogeneity assumption可以看做一个文本中类型的分布,也就是说,不同的修辞和策略使得文本各个部分有不同的等级。每个文本都有一个structure,每个structure都有一个修辞目的,这个目的可以在文本中用多种修辞形式表示,但是没有任何一个可以表示文本的全部。
Sequential and Nonsequential Analysis Processing
For example, it has the advantage of avoiding local cluster- ing of content words, which Malvern et al. (2004) argued may lead to a distorted view of the overall text. Landauer, Laham, Rehder, and Schreiner (1997) went even further, claiming that there may be little benefit to word order when it comes to deriving meaning from texts.
INDICES OF LEXICAL DIVERSITY
vocd-D
The calculation of vocd-D is the result of a series of ran- dom text samplings. The approach begins its calculation by taking from the text 100 random samples of 35 tokens. The TTR for each of these samples is calculated, and the mean TTR is stored. The same procedure is then repeated for samples from 36 to 50 tokens. An empirical TTR curve is then created from the means of each of these samples.
HD-D
The hypergeometric distribution represents the prob- ability of drawing (without replacement) a certain number of tokens of a particular type from a sample of a particu- lar size. The way we have used this distribution for our own HD-D index is to calculate, for each lexical type in a text, the probability of encountering any of its tokens in a random sample of 42 words drawn from the text.3 The probabilities for all lexical types in the text are then added together, and the sum is used as an index of the text’s LD.
Other LD Indices Used in This Study
Log correction.
Because the text length problem of LD is related to frequency, log values have long been used as an LD corrective factor .
Frequency correction.
A second approach to correct- ing for the text length effect is the frequency distribution of types.
For example, consider the sentence The friendly man liked both the big dog and the little dog, which contains nine types and 12 tokens, and then consider the sentence The friendly man, whom the big dog liked, liked a little dog, which also contains nine types and 12 tokens. Note that the first sentence contains 3 tokens of the type the, whereas the second sentence contains only 2 tokens of the type the; however, for the second sentence, the word liked has a frequency of 2, whereas it is just 1 in the first sentence.
Whereas vocd-D is deter- mined by the sums of probabilities of encountering each type in the text in sample sizes from 35 to 50 tokens, K is determined by the sums of probabilities of encountering each type in the text when the sample size is set to just 2 words.
MTLD
Processing MTLD
MTLD is an index of a text’s LD, evaluated sequen- tially. It is calculated as the mean length of sequential word strings in a text that maintain a given TTR value (here, .720). During the calculation process, each word of the text is evaluated sequentially for its TTR. For example, . . . of (1.00) the (1.00) people (1.00) by (1.00) the (.800) people (.667) for (.714) the (.625) people (.556) . . . and so forth. However, when the default TTR factor size value (here, .720) is reached, the factor count increases by a value of 1, and the TTR evaluations are reset. Thus, given the previous example, MTLD would execute . . . of (1.00) the (1.00) people (1.00) by (1.00) the (.800) people (.667) |||FACTORS FACTORS 1||| for (1.00) the (1.00) peo- ple (1.00) . . . and so forth.
Forward and Reverse Processing
之所以计算一个前向的一个后向的,是因为如果只从前往后计算的话,segmentation sizes 的不同会导致结果的variation很大
Calculation of MTLD Value
The total number of words in the text is divided by the total factor count. For example, if the text 340 words and the factor count 4.404, then the MTLD value is 77.203. Two such MTLD values are calculated, one for forward processing and one for reverse processing. The mean of the two values is the final MTLD value.
MTLD -词汇复杂度的指标的更多相关文章
- 精通Web Analytics 2.0 (5) 第三章:点击流分析的奇妙世界:指标
精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第三章:点击流分析的奇妙世界:指标 新的Web Analytics 2.0心态:搞定它.新的闪亮系列工具:是的.准备好了吗?当然 ...
- 通过 Visual Studio 的“代码度量值”来改进代码质量
1 软件度量值指标 1.1 可维护性指数 表示源代码的可维护性,数值越高可维护性越好.该值介于0到100之间.绿色评级在20到100之间,表明该代码具有高度的可维护性:黄色评级在10到19之间,表示该 ...
- R语言︱SNA-社会关系网络—igraph包(中心度、中心势)(二)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- SNA社会关系网络分析中,关键的就是通过一些指 ...
- 通过Visual Studio 的“代码度量值”来改进代码质量
1 软件度量值指标 1.1 可维护性指数 表示源代码的可维护性,数值越高可维护性越好.该值介于0到100之间.绿色评级在20到100之间,表明该代码具有高度的可维护性:黄色评级在10到19之间,表示该 ...
- 模型监控指标- 混淆矩阵、ROC曲线,AUC值,KS曲线以及KS值、PSI值,Lift图,Gain图,KT值,迁移矩阵
1. 混淆矩阵 确定截断点后,评价学习器性能 假设训练之初以及预测后,一个样本是正例还是反例是已经确定的,这个时候,样本应该有两个类别值,一个是真实的0/1,一个是预测的0/1 TP(实际为正预测为正 ...
- TensorFlow深度学习笔记 循环神经网络实践
转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 加 ...
- A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical Simplification-paper
https://github.com/mounicam/lexical_simplification 提供了SimplePPDBpp: SimplePPDB++ resource consisting ...
- 1+1>2:MIT&IBM提出结合符号主义和连接主义的高效、准确新模型
自人工智能的概念提出以来,关于符号主义和连接主义的争论就不绝于耳.究竟哪一种方式可以实现更好的人工智能?这一问题目前还没有定论.深度学习的快速发展让我们看到连接主义在构建 AI 系统中的优势,但其劣势 ...
- 「视频直播技术详解」系列之七:直播云 SDK 性能测试模型
关于直播的技术文章不少,成体系的不多.我们将用七篇文章,更系统化地介绍当下大热的视频直播各环节的关键技术,帮助视频直播创业者们更全面.深入地了解视频直播技术,更好地技术选型. 本系列文章大纲如下: ...
随机推荐
- 让input不可编辑
有时候,我们希望表单中的文本框是只读的,让用户不能修改其中的信息,如使<input type="text" name="input1" value=&qu ...
- 花了几天学习了vue跟做的仿制app
Vue.js国内开发者 是用于构建交互式的 Web 界面的库.它提供了mvvm 数据绑定和一个可组合的组件系统,具有简单.灵活的 API.从技术上讲, Vue.js 集中在 mvvm 模式上的视图模 ...
- 关于SQLSERVER数据库连接池
页内导航 1.如何开启连接池? 2. 那连接池是和有什么有关呢? 3.如何使用相同的连接池访问不同的数据库? ‘关于数据库连接池大家都听说过或者用过,但真正的了解有多少呢? 数据连接池如何启用?有哪些 ...
- Windows 2008 安装Sql server 2005
Windows 2008 安装Sql server 2005 进入下载的文件中,双击打开:splash.hta 文件进行安装 根据自己的系统来选择性进行安装,这里我们选择第二项:基于 x64 的操作系 ...
- VIPKID 内推---开发工程师
VIPKID 目前是K12教育领域最大的一家公司,目前已发展到6w名北美外教,服务于中国50w的小朋友,每天数十万节视频课程在线上进行. 有兴趣加入VIPKID的程序员小伙伴,请发简历到 gloryz ...
- thinkphp5和thinkphp3.2.3中URL重写出现No input file specified
查询后解决办法是打开public目录下的.htaccess文件,把:RewriteRule ^(.*)$ index.php/$1 [QSA,PT,L] 改为:RewriteRule ^(.*)$ i ...
- fwrite文件写入数据
文件的操作就两种:读和写 读:把文件中的内容读入到程序中,然后根据自己的项目需求把文件的数据进行相关的处理. 写:就是将程序中的数据,写入到文件中,去更新文件. 这么两种操作归到代码中就是这两种函数: ...
- spring websocket报错:No matching message handler methods.
错误信息: [org.springframework.web.socket.messaging.WebSocketAnnotationMethodMessageHandler]-[DEBUG] No ...
- Python 字典删除元素clear、pop、popitem
同其它python内建数据类型一样,字典dict也是有一些实用的操作方法.这里我们要说的是字典删除方法:clear().pop()和popitem(),这三种方法的作用不同,操作方法及返回值都不相同. ...
- xml的作用
XML应用面主要分为两种类型,文档型和数据型.下面介绍一下几种常见的XML应用: 1.自定义XML+XSLT=>HTML,最常见的文档型应用之一.XML存放整个文档的XML数据,然后XSLT将X ...