Dijkstra求最短路径&例题
讲了半天好像也许maybe听懂了一点,先写下来233
先整理整理怎么存(开始绕)
最简单的是邻接矩阵存,但是开到10000*10000就MLE了,所以我们用链式前向星存(据说是叫这个名字吧)
这是个什么鬼玩意呢?
我们在记录时,以输入的顺序记录。
我们记录一条边,就记下它的终点(to),权值(就是边长)(dis),以及和这条边的起点相同,编号稍微小一点的边的编号(next)(开始绕)
这里我们记录当前每个点的所有出边(就是起点是这个点的边)中编号最大的那一条边(因为上面的next是编号稍微小的边)
当然也可以依据自己的习惯存储边
先上段代码
int head[nmax],n,m,s;//head[i] 是 以 点 i 为 起 点 , 所 有 出 边 中 编 号 最 大 的 一 个
priority_queue<pair<int,int> > q;
void add(int fr,int _to,int _dis)
{ cnt++;
eage[cnt].to=_to;
eage[cnt].dis=_dis;
eage[cnt].next=head[fr];//fr 为 from 的 简 写 , 这 里 的 以 点 i 为 起 点 的 边 多 了 一 条,
//所 以 上 一 个 以 点 i 为 起 点 的 编 号 最 大 的 边 就 是 这 里 的 以 i 为 起 点 编 号 最 大 的 边 的 上 一 条 边
head[fr]=cnt; //更 新 head[i]
}Edge [50001];
const int inf=;
int main()
{ scanf("%d%d%d",&n,&m,&o_node);
dis[o_node]=;
for(int i=;i<=m;i++)
{int from,to,dis;
cin>>from>>to>>dis;
add(from,to,dis);
}
这一坨是存图
拿张图举个例子

假设我们输入边的数据如下(三个数n,m,s,n为起点,m为终点,s为边长)
1 2 2
2 3 2
1 3 5
2 4 1
3 4 2
1 4 4
那代码中的存储如下
Edge[1].to=2,Edge[1].dis=2,Edge[1].next=0,head[1]=1(这里指没有上一条边),head[1]=1(这里head[i]记录的是以i为起点,当前最大编号出边的编号)
Edge[2].to=3,Edge[2].dis=2,Edge[2].next=0,head[2]=2
Edge[3].to=3,Edge[3].dis=5,Edge[3].next=1,head[1]=3
.....................................
讲完存图,再来说这个算法是怎么实现的
要求最短路径,这里有点类似贪心。
首先选择一个距离起点最近的直达点b,记录当前点与b的距离,再由b进行相同的扩展,来更新起点与其它点的距离
这样更新了一圈后就是最短距离,
再举个栗子

没错还是刚才那张图,这里标出了每条边的权值
按照dijkstra算法,我们首先找到距离①最近的直达点②,由②更新出①到④的最短路为3,①到③的最短路为4,
那么程序怎么实现呢?
看注释吧
(代码from gh,注释自己加的)
#include <iostream>
#include <cstdio>
#include <queue> using namespace std;
const int INF = ;
struct edge
{
int to, dis_, next;
} Edge[];
struct node
{
int to, dis;
inline friend bool operator<(const node &a, const node &b)
{
return a.dis < b.dis;//构造函数,将优先队列按照权值从小到大排序
}
};
int head[], dis[];
bool vst[];
int nodenum, edgenum, origin_node, cnt = ;
priority_queue<node> q;//优先队列 inline void add_edge(int from, int to, int value)
{
Edge[cnt].to = to;
Edge[cnt].dis_ = value;
Edge[cnt].next = head[from];
head[from] = cnt++;
} inline void dijkstra()
{
for (register int i = ; i < origin_node; i++)
{
dis[i] = INF;//全部初始化为一个很大的数
}
dis[origin_node]=0;
for (register int i = origin_node + ; i <= nodenum; i++)
{
dis[i] = INF;
}
q.push((node){origin_node, });
while (!q.empty())//队不空(这里是当广搜来做的)
{
int x = q.top().to;
q.pop();
if (vst[x])//如果访问过,就跳过
continue;
vst[x] = ;
for (register int i = head[x]; i; i = Edge[i].next)//从以x为起点的最后一条边开始,一直遍历完这个点的所有边
{
dis[Edge[i].to] = min(dis[Edge[i].to], dis[x] + Edge[i].dis_);//比较原来的大小和以x点为中转后的大小(取小的)
q.push((node){Edge[i].to, -dis[Edge[i].to]});//入队
}
}
} template <typename T_>
inline T_ getnum()
{
T_ res = ;
bool flag = false;
char ch = getchar();
while (!isdigit(ch))
{
flag = flag ? flag : ch == '-';
ch = getchar();
}
while (isdigit(ch))
{
res = (res << ) + (res << ) + ch - '';
ch = getchar();
}
return flag?-res:res;
}
template<typename T_>
inline void putnum(T_ num)
{
if (num<)
{
putchar('-');
num=-num;
}
if (num>)putnum(num/);
putchar(''+num%);
} int main()
{
nodenum = getnum<int>(), dgenum = getnum<int>(),origin_node = getnum<int>();
for (register int i = ; i <= edgenum; i++)
{
register int f, t, v;
f = getnum<int>(), t = getnum<int>(), v = getnum<int>();
add_edge(f, t, v);
}
dijkstra();
for (register int i=;i<=nodenum;putchar(' '),i++)
{
putnum<int>(dis[i]);
}
return ;
}
顺便附上一道dijkstra的题

这个好像就是个模板哈
(代码from题解)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<set>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 3001
#define MOD 123
#define E 1e-6
using namespace std;
struct node{
int pre;
int next;
int w;
}a[N*];
int n,m;
int cnt;
int head[N],vis[N],f[N];
void add(int x,int y,int w)
{
cnt++;
a[cnt].pre=y;
a[cnt].next=head[x];
a[cnt].w=w;
head[x]=cnt; cnt++;
a[cnt].pre=x;
a[cnt].next=head[y];
a[cnt].w=w;
head[y]=cnt;
}//存图 int main()
{
cin>>n>>m;
for(int i=;i<=m;i++)
{
int x,y,w;
cin>>x>>y>>w;
add(x,y,w);
} memset(f,INF,sizeof(f));
f[]=;
vis[]=; int x=head[];//手动模拟第一次出队
while(x!=)
{
int y=a[x].pre;
if(f[y]>a[x].w)
f[y]=a[x].w;
x=a[x].next;
} int cnt=;
while(cnt<n)//遍历所有的点
{
cnt++;
int k;
int minn=INF;
for(int i=;i<=n;i++)
if(vis[i]==&&f[i]<minn)
{
minn=f[i];
k=i;
}//先把能赋值的距离赋值上
vis[k]=; int x=head[k];//手动模拟for循环
while(x!=)//这里木有队列,所以要while循环一次处理完
{
int y=a[x].pre;
int w=a[x].w;
if(vis[y]==&&f[y]>f[k]+w)
f[y]=f[k]+w;
x=a[x].next;
}
} if(f[n]==INF)
cout<<"-1"<<endl;
else
cout<<f[n]<<endl;
return ;
}
堆优化
我们上面说到dij是先挑距离起点最近的一个点b搞,然后再找距离b最近的点搞,那么每次判断距离就有点麻烦。我们换成每次挑距离起点最近的点搞,这样我们可以用堆(priority_queue)来维护距离起点最近的那个点,时间复杂度O(nmlogn)
代码:
#include<bits/stdc++.h>
#define pa pair<int,int>
using namespace std;
inline int read()
{
char ch=getchar();
int x=;bool f=;
while(ch<''||ch>'')
{
if(ch=='-')f=;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=(x<<)+(x<<)+(ch^);
ch=getchar();
}
return f?-x:x;
}
int n,m,dis[],cnt,head[],s;
struct Ed{
int to,dis,nxt;
}edge[];
inline void add(int fr,int to,int dis)
{
cnt++;
edge[cnt].to=to;
edge[cnt].dis=dis;
edge[cnt].nxt=head[fr];
head[fr]=cnt;
}
priority_queue<pa,vector<pa>,greater<pa> > q;//大根堆转小根堆
bool vis[];
inline void dij(int s)
{
for(int i=;i<=n;i++)
dis[i]=;
dis[s]=;
q.push(make_pair(,s));
while(!q.empty())
{
int now=q.top().second;
q.pop();
if(vis[now])continue;
vis[now]=;
for(int e=head[now];e;e=edge[e].nxt)
{
int v=edge[e].to;
if(dis[now]+edge[e].dis<dis[v])
{
dis[v]=dis[now]+edge[e].dis;
q.push(make_pair(dis[v],v));
}
}
}
}
int main()
{
n=read();m=read();s=read();
for(int i=;i<=m;i++)
{
int u=read(),v=read(),w=read();
add(u,v,w);
}
dij(s);
for(int i=;i<=n;i++)
printf("%d ",dis[i]);
}
Dijkstra求最短路径&例题的更多相关文章
- Dijkstra求最短路径
单源点的最短路径问题:给定带权有向图G和源点V,求从V到G中其余各顶点的最短路径 Dijkstra算法描述如下: (1)用带权的邻接矩阵arcs表示有向图,arcs[i][j]表示弧<vi,vj ...
- POJ 2387 Til the Cows Come Home Dijkstra求最短路径
Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to get as much s ...
- POJ 3255 Roadblocks (Dijkstra求最短路径的变形)(Dijkstra求次短路径)
Roadblocks Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 16425 Accepted: 5797 Descr ...
- 算法-图(1)Dijkstra求最短路径
数组dist[],是当前求到的顶点v到顶点j的最短路径长度 数组path[]存放求到的最短路径,如path[4]=2,path[2]=3,path[3]=0,则路径{0,3,2,4}就是0到4的最短路 ...
- 《算法导论》读书笔记之图论算法—Dijkstra 算法求最短路径
自从打ACM以来也算是用Dijkstra算法来求最短路径了好久,现在就写一篇博客来介绍一下这个算法吧 :) Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的 ...
- Dijkstra算法求最短路径(java)(转)
原文链接:Dijkstra算法求最短路径(java) 任务描述:在一个无向图中,获取起始节点到所有其他节点的最短路径描述 Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到 ...
- 求最短路径算法之SPAF算法。
关于求最短路径: 求最短路径的算法有许多种,除了排序外,恐怕是OI界中解决同一类问题算法最多的了.最熟悉的无疑是Dijkstra(不能求又负权边的图),接着是Bellman-Ford,它们都可以求出由 ...
- NYOJ 1248 海岛争霸(Dijkstra变形——最短路径最大权值)
题目链接: http://acm.nyist.net/JudgeOnline/problem.php?pid=1248 描述 神秘的海洋,惊险的探险之路,打捞海底宝藏,激烈的海战,海盗劫富等等.加勒比 ...
- POJ 3790 最短路径问题(Dijkstra变形——最短路径双重最小权值)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3790 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你 ...
随机推荐
- background属性冲突导致的部分浏览器背景图片不显示问题
前几天在项目中遇到了一个让人摸不着头脑的bug,测试说页面显示有点问题并发了截图, 正常的显示状态是这样 首先我自信地用自己的手机检查了一下,没有问题,问清楚后得知是UC浏览器中出现的,UC的内核是u ...
- 西部数码虚拟空间配置ssl
1.在阿里云申请ssl证书 2.解析到西部数码cname地址 3.西部数码---> 申请ssl部署 4.申请托管证书 5.部署https后设置301跳转将http跳转到https 参照: ht ...
- python 解方程
[怪毛匠子=整理] SymPy 库 安装 sudo pip install sympy x = Symbol('x') 解方程 solve([2 * x - y - 3, 3 * x + y - 7] ...
- Android Studio 入口程序的设置方法
在src -> main中 ,打开 AndroidManifest.xml 这个文件 下面这里有两个窗口,如果要想把哪个窗口设置成入口窗体,只要把下面红色的放在这个节点中就可以了 <act ...
- WEBBASE篇: 第十篇, JavaScript知识5
JavaScript知识5 <!doctype html> <html lang="en"> <head> <meta charset=& ...
- Centos7.5系统 SSH升级到7.9
SSH7.9安装 #!/bin/bash#删除旧版ssh包 危险操作,不删除也可以安装,建议跳过此操作.#rpm -e `rpm -qa | grep openssh` #安装zlib依赖包wget ...
- CF867E: Buy Low Sell High(贪心, STL) (hdu6438)
Description 有nn个城市,第ii个城市商品价格为aiai,从11城市出发依次经过这nn个城市到达n n城市,在每个城市可以把手头商品出售也可以至多买一个商品,问最大收益. Input 第 ...
- SQLI DUMB SERIES-20
(1)登录成功后页面: (2)登录成功后,用burp开始抓包,刷新浏览器页面,将会跳出如下页面 (3)根据各种提示,知道需要从cookies入手,寻找闭合方式 闭合方式为单引号.注释符也可以用 (4) ...
- loadrunner---Android、iOS压力测试
链接来源:http://www.cnblogs.com/ydnice/p/5790848.html 一.LoadRunner简介 LoadRunner,是惠普公司研发的一款预测系统行为和性能的负载测试 ...
- node.js同步读取与异步读取文件