254. Drop Eggs

https://www.lintcode.com/problem/drop-eggs/description?_from=ladder&&fromId=1

28. Search a 2D Matrix

https://www.lintcode.com/problem/search-a-2d-matrix/description?_from=ladder&&fromId=1

思路1:

  1. find the row index, the last number <= target

  2. find the column index, the number equal to target

public class Solution {
/**
* @param matrix: matrix, a list of lists of integers
* @param target: An integer
* @return: a boolean, indicate whether matrix contains target
*/
public boolean searchMatrix(int[][] matrix, int target) {
// write your code here
if(matrix == null || matrix.length == 0) return false;
int left = 0, right = matrix[0].length - 1;
int row = findRow(matrix, target);
if(matrix[row][0] > target || matrix[row][right] < target) {
return false;
}
while(left + 1 < right) {
int mid = left + (right - left) / 2;
if(matrix[row][mid] == target) {
return true;
} else if(matrix[row][mid] > target) {
right = mid;
} else {
left = mid;
}
}
if(matrix[row][left] == target || matrix[row][right] == target) {
return true;
} else {
return false;
}
} public int findRow(int[][] matrix, int target) {
int top = 0, bottom = matrix.length - 1, right = matrix[0].length - 1;
while(top + 1 < bottom) {
int mid = top + (bottom - top) / 2;
if(matrix[mid][right] == target) {
return mid;
} else if(matrix[mid][right] > target) {
bottom = mid;
} else {
top = mid;
}
}
if(matrix[top][right] >= target) {
return top;
} else {
return bottom;
}
}
}

思路2:

1. 可以看作是一个有序数组被分成了n段,每段就是一行。因此依然可以二分求解。

对每个数字,根据其下标 i,j 进行编号,每个数字可被编号为 0 ~ n *(n - 1)

2. 相当于是在一个数组中的下标,然后直接像在数组中二分一样来做。取得 mid 要还原成二维数组中的下标,i = mid / n, j = mid % n

3. int start = 0, end = row * row * column - 1;

int number = matrix[mid / column][mid % column];

// Binary Search Once
public class Solution {
/**
* @param matrix, a list of lists of integers
* @param target, an integer
* @return a boolean, indicate whether matrix contains target
*/
public boolean searchMatrix(int[][] matrix, int target) {
// write your code here
if(matrix == null || matrix.length == 0){
return false;
} if(matrix[0] == null || matrix[0].length == 0){
return false;
} int row = matrix.length;
int column = matrix[0].length; int start = 0, end = row * column - 1;
while(start <= end){
int mid = start + (end - start) / 2;
int number = matrix[mid / column][mid % column];
if(number == target){
return true;
}else if(number > target){
end = mid - 1;
}else{
start = mid + 1;
}
} return false; }
}

14. First Position of Target 

https://www.lintcode.com/problem/first-position-of-target/description?_from=ladder&&fromId=1

思路:这道题很简单。套用二分法的模版即可

 public class Solution {
/**
* @param nums: The integer array.
* @param target: Target to find.
* @return: The first position of target. Position starts from 0.
*/
public int binarySearch(int[] nums, int target) {
// write your code here
if(nums == null || nums.length == 0) return -1;
int start = 0, end = nums.length - 1;
while(start + 1 < end) {
int mid = start + (end - start) / 2;
if(nums[mid] >= target) {
end = mid;
} else {
start = mid;
}
}
if(nums[start] == target) {
return start;
}
if(nums[end] == target) {
return end;
}
return -1;
}
}

414. Divide Two Integers

https://www.lintcode.com/problem/divide-two-integers/description?_from=ladder&&fromId=1

1. 凡是要移位,要做的第一件事就是把 int 转换成 long,为了防止移位时溢出。

2. 基本思路是利用减法,看看被除数可以减去多少次除数。使用倍增的思想优化,可以将减法的次数优化到对数的时间复杂度。

3. 我们将除数左移一位(或加上它自己),即得到了二倍的除数,这时一次相当于减去了两个除数,通过不断倍增,时间复杂度很优秀。

4. 与此同时,还需要一个变量记录此时的除数是最初除数的多少倍,每次减法后都加到结果上即可。

 public class Solution {
/**
* @param dividend: the dividend
* @param divisor: the divisor
* @return: the result
*/
public int divide(int dividend, int divisor) {
// write your code here
if(divisor == 0) {
return dividend >= 0 ? Integer.MAX_VALUE : Integer.MIN_VALUE;
}
if(dividend == 0) {
return 0;
}
if(divisor == -1 && dividend == Integer.MIN_VALUE) {
return Integer.MAX_VALUE;
}
boolean isNegative = ((divisor > 0 && dividend < 0) || (divisor < 0 && dividend > 0)) ? true : false;
long divisorL = Math.abs((long)divisor);
long dividendL = Math.abs((long)dividend);
int result = 0;
while(dividendL >= divisorL) {
int shift = 0;
while(dividendL >= (divisorL << shift)) {
shift++;
}
result += 1 << (shift - 1);
dividendL -= divisorL << (shift - 1);
}
if(isNegative) {
return result * (-1);
}
return result;
}
}

61. Search for a Range

https://www.lintcode.com/problem/search-for-a-range/description?_from=ladder&&fromId=1

这道题同样很简单,套用模版即可。

 public class Solution {
/**
* @param A: an integer sorted array
* @param target: an integer to be inserted
* @return: a list of length 2, [index1, index2]
*/
public int[] searchRange(int[] A, int target) {
// write your code here
if(A == null || A.length == 0) return new int[]{-1, -1};
int start = findStart(A, target);
int end = findEnd(A, target);
return new int[]{start, end}; } public int findStart(int[] A, int target) {
int start = 0;
int end = A.length - 1;
while(start + 1 < end) {
int mid = start + (end - start) / 2;
if(A[mid] < target) {
start = mid;
} else {
end = mid;
}
}
if(A[start] == target) {
return start;
}
if(A[end] == target) {
return end;
}
return -1;
} public int findEnd(int[] A, int target) {
int start = 0;
int end = A.length - 1;
while(start + 1 < end) {
int mid = start + (end - start) / 2;
if(A[mid] <= target) {
start = mid;
} else {
end = mid;
}
}
if(A[end] == target) {
return end;
}
if(A[start] == target) {
return start;
}
return -1;
}
}

2 - Binary Search & LogN Algorithm的更多相关文章

  1. 2 - Binary Search & LogN Algorithm - Apr 18

    38. Search a 2D Matrix II https://www.lintcode.com/problem/search-a-2d-matrix-ii/description?_from=l ...

  2. 将百分制转换为5分制的算法 Binary Search Tree ordered binary tree sorted binary tree Huffman Tree

    1.二叉搜索树:去一个陌生的城市问路到目的地: for each node, all elements in its left subtree are less-or-equal to the nod ...

  3. [Algorithms] Binary Search Algorithm using TypeScript

    (binary search trees) which form the basis of modern databases and immutable data structures. Binary ...

  4. 【437】Binary search algorithm,二分搜索算法

    Complexity: O(log(n)) Ref: Binary search algorithm or 二分搜索算法 Ref: C 版本 while 循环 C Language scripts b ...

  5. js binary search algorithm

    js binary search algorithm js 二分查找算法 二分查找, 前置条件 存储在数组中 有序排列 理想条件: 数组是递增排列,数组中的元素互不相同; 重排 & 去重 顺序 ...

  6. [Algorithm] Delete a node from Binary Search Tree

    The solution for the problem can be divided into three cases: case 1: if the delete node is leaf nod ...

  7. [Algorithm] Check if a binary tree is binary search tree or not

    What is Binary Search Tree (BST) A binary tree in which for each node, value of all the nodes in lef ...

  8. [Algorithm] Count occurrences of a number in a sorted array with duplicates using Binary Search

    Let's say we are going to find out number of occurrences of a number in a sorted array using binary ...

  9. my understanding of (lower bound,upper bound) binary search, in C++, thanks to two post 分类: leetcode 2015-08-01 14:35 113人阅读 评论(0) 收藏

    If you understand the comments below, never will you make mistakes with binary search! thanks to A s ...

随机推荐

  1. pytorch加载预训练模型参数的方式

    1.直接使用默认程序里的下载方式,往往比较慢: 2.通过修改源代码,使得模型加载已经下载好的参数,修改地方如下: 通过查找自己代码里所调用网络的类,使用pycharm自带的函数查找功能(ctrl+鼠标 ...

  2. 安装mongodb服务

    摘要:https://www.cnblogs.com/z-x-y/p/9305635.html 欢迎转载,转载请标明出处:https://www.cnblogs.com/z-x-y/p/9305635 ...

  3. 阿里负载均衡,配置中间证书问题(在starcom申请免费DV ssl)

    前提假如免费版相关证书都已经配置到位,但是微信小程序Android访问有问题,检测域名(https://www.myssl.cn/tools/check-server-cert.html)发现服务器缺 ...

  4. var,dynamic的用法

    private void Form1_Load(object sender, EventArgs e) { var dt = Getuser() as IEnumerable<dynamic&g ...

  5. pycharm中不以pytest方式运行,以普通方式运行的方法

    问题: 在调试一个很简单的代码时无法输出结果,运行结果如下形式: 出现以上情况,主要是因为在运行时是以pytest方式运行的,要换回以普通方式去运行. 问题解决: 首先是红色圈圈里的白色三角形. 然后 ...

  6. Python爬虫与一汽项目【三】爬取中国五矿集团采购平台

    网站地址:http://ec.mcc.com.cn/b2b/web/two/indexinfoAction.do?actionType=showMoreCgxx&xxposition=cgxx ...

  7. sourceTree 代码冲突解决

    1.代码提交,有冲突 2. 拉取未同步的代码,勾选用衍合代替合并. 3. 在工作副本,未提交代码显示 4. 冲突代码解决 5. sourcetree页面

  8. 记录es在虚拟机的开启步骤

    最近开始接触elasticserach数据库,于是想在虚拟机上装一个练练手,装的时候可是费了好多时间,百度了许多教程,但是教程太多太乱,怕自己容易忘,所以记录一下,但是我主要记录是装好的es数据库如何 ...

  9. python 识别图片上的数字

    https://blog.csdn.net/qq_31446377/article/details/81708006 ython 3.6 版本 Pytesseract 图像验证码识别 环境: (1) ...

  10. 【js】了解前端缓存,收获不止于此!

    了解前端缓存,收获不止于此! 这次我们来讲一下关于前端缓存的问题.感谢赵欢同学提供doc素材. 首先,开局我画了一张图,你会对文章有一个大局了解. 今天讲的是前端缓存. 前端缓存有3大种:如图,分为H ...