前言

这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x(权重),使得f(x)的值最小。

本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理。

SGD

SGD指stochastic gradient descent,即随机梯度下降。是梯度下降的batch版本。

对于训练数据集,我们首先将其分成n个batch,每个batch包含m个样本。我们每次更新都利用一个batch的数据,而非整个训练集。即:

其中,η为学习率,gt为x在t时刻的梯度。

这么做的好处在于:

  • 当训练数据太多时,利用整个数据集更新往往时间上不显示。batch的方法可以减少机器的压力,并且可以更快地收敛。
  • 当训练集有很多冗余时(类似的样本出现多次),batch方法收敛更快。以一个极端情况为例,若训练集前一半和后一半梯度相同。那么如果前一半作为一个batch,后一半作为另一个batch,那么在一次遍历训练集时,batch的方法向最优解前进两个step,而整体的方法只前进一个step。

Momentum

SGD方法的一个缺点是,其更新方向完全依赖于当前的batch,因而其更新十分不稳定。解决这一问题的一个简单的做法便是引入momentum。

momentum即动量,它模拟的是物体运动时的惯性,即更新的时候在一定程度上保留之前更新的方向,同时利用当前batch的梯度微调最终的更新方向。这样一来,可以在一定程度上增加稳定性,从而学习地更快,并且还有一定摆脱局部最优的能力:

其中,ρ 即momentum,表示要在多大程度上保留原来的更新方向,这个值在0-1之间,在训练开始时,由于梯度可能会很大,所以初始值一般选为0.5;当梯度不那么大时,改为0.9。η 是学习率,即当前batch的梯度多大程度上影响最终更新方向,跟普通的SGD含义相同。ρ 与 η 之和不一定为1。

Nesterov Momentum

这是对传统momentum方法的一项改进,由Ilya Sutskever(2012 unpublished)在Nesterov工作的启发下提出的。

  

首先,按照原来的更新方向更新一步(棕色线),然后在该位置计算梯度值(红色线),然后用这个梯度值修正最终的更新方向(绿色线)。上图中描述了两步的更新示意图,其中蓝色线是标准momentum更新路径。

公式描述为:

Adagrad

Adagrad其实是对学习率进行了一个约束。即:

此处,对从1到进行一个递推形成一个约束项regularizer,,用来保证分母非0

特点:

  • 前期较小的时候, regularizer较大,能够放大梯度
  • 后期较大的时候,regularizer较小,能够约束梯度
  • 适合处理稀疏梯度

缺点:

  • 由公式可以看出,仍依赖于人工设置一个全局学习率
  • 设置过大的话,会使regularizer过于敏感,对梯度的调节太大
  • 中后期,分母上梯度平方的累加将会越来越大,使,使得训练提前结束

Adadelta

Adadelta是对Adagrad的扩展,最初方案依然是对学习率进行自适应约束,但是进行了计算上的简化。Adagrad会累加之前所有的梯度平方,而Adadelta只累加固定大小的项,并且也不直接存储这些项,仅仅是近似计算对应的平均值。即:

在此处Adadelta其实还是依赖于全局学习率的,但是作者做了一定处理,经过近似牛顿迭代法(求根点)之后:

其中,代表求期望。

此时,可以看出Adadelta已经不用依赖于全局学习率了。

特点:

  • 训练初中期,加速效果不错,很快
  • 训练后期,反复在局部最小值附近抖动

RMSprop

RMSprop可以算作Adadelta的一个特例:

时,就变为了求梯度平方和的平均数。

如果再求根的话,就变成了RMS(均方根):

此时,这个RMS就可以作为学习率的一个约束:

特点:

  • 其实RMSprop依然依赖于全局学习率
  • RMSprop算是Adagrad的一种发展,和Adadelta的变体,效果趋于二者之间
  • 适合处理非平稳目标- 对于RNN效果很好

Adam

Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。公式如下:

其中,分别是对梯度的一阶矩估计和二阶矩估计,u和v为衰减率,u通常为0.9,v通常为0.999,可以看作对期望的估计;是对的校正,这样可以近似为对期望的无偏估计。可以看出,直接对梯度的矩估计对内存没有额外的要求,而且可以根据梯度进行动态调整,而对学习率形成一个动态约束,而且有明确的范围。

特点:

  • 结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点
  • 对内存需求较小
  • 为不同的参数计算不同的自适应学习率
  • 也适用于大多非凸优化- 适用于大数据集和高维空间

深度学习(九) 深度学习最全优化方法总结比较(SGD,Momentum,Nesterov Momentum,Adagrad,Adadelta,RMSprop,Adam)的更多相关文章

  1. [深度学习] 最全优化方法总结比较--SGD,Adagrad,Adadelta,Adam,Adamax,Nadam

    SGD 此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 min ...

  2. 深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)(转)

    转自: https://zhuanlan.zhihu.com/p/22252270    ycszen 另可参考: https://blog.csdn.net/llx1990rl/article/de ...

  3. 深度学习最全优化方法总结比较及在tensorflow实现

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u010899985/article/d ...

  4. 深度学习——优化器算法Optimizer详解(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)

    在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论 ...

  5. 学习笔记DL002:AI、机器学习、表示学习、深度学习,第一次大衰退

    AI早期成就,相对朴素形式化环境,不要求世界知识.如IBM深蓝(Deep Blue)国际象棋系统,1997,击败世界冠军Garry Kasparov(Hsu,2002).国际象棋,简单领域,64个位置 ...

  6. (转载)深度剖析 | 可微分学习的自适配归一化 (Switchable Normalization)

    深度剖析 | 可微分学习的自适配归一化 (Switchable Normalization) 作者:罗平.任家敏.彭章琳 编写:吴凌云.张瑞茂.邵文琪.王新江 转自:知乎.原论文参考arXiv:180 ...

  7. 深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)

    深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 ...

  8. 【深度学习】Pytorch 学习笔记

    目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07 ...

  9. 截图:【炼数成金】深度学习框架Tensorflow学习与应用

    创建图.启动图 Shift+Tab Tab 变量介绍: F etch Feed 简单的模型构造 :线性回归 MNIST数据集 Softmax函数 非线性回归神经网络   MINIST数据集分类器简单版 ...

随机推荐

  1. 极速创建 IOS APP !涛舅舅苹果 IOS APP自助生成系统正式上线

    经过大量的测试和开发工作,涛舅舅苹果 IOS APP自助生成系统正式上线! 本系统主要功能: 1.用最最简单的方式将H5网站打包生成一个苹果APP 2.只需要提供APP标题,H5网站首页url地址,一 ...

  2. WWH——学习方法理解与分析

    WWH是"What+Why+How"的简称,是对学习方法最完美的概括."如果不按照WWH这种模式来教学,90%的结果是老师没教好,学生学不好." 1.What( ...

  3. Oracle、DB2、SQLSERVER、Mysql、Access分页SQL语句

    最近把平时在项目中常用到的数据库分页sql总结了下.大家可以贴出分页更高效的sql语句.sqlserver分页  第一种分页方法 需用到的参数:  pageSize 每页显示多少条数据  pageNu ...

  4. 微信跳转,网页跳转微信app跳转公众号关注页面[转载]

    [微信跳转链接]之跳转公众号关注页面如何做到在微信内部在这里插入代码片浏览器打开的webview页面中,跳转到微信公众号的关注页面呢!我们可以通过访问微信提供的URL协议(weixin://)来实现这 ...

  5. Git 实用指南

    传送门: https://mp.weixin.qq.com/s?__biz=MzI3MzgxNDY2MQ==&mid=2247484159&idx=1&sn=2d28513ef ...

  6. 继承ipkPlayer中出现的一些错误汇总

    1.下载完ffmpeg后,我们再在终端执行下面两个命令: cd ios./compile-ffmpeg.sh clean./compile-ffmpeg.sh all 大体流程如下  这里如果出现 x ...

  7. Spring整合MybatisPlus学习笔记

    简介 MyBatis-Plus(简称 MP)是一个 MyBatis 的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发.提高效率而生 特性 无侵入:只做增强不做改变,引入它不会对现有 ...

  8. TCPDF解决保存中文文件名的方法

    PHP使用TCPDF生成PDF文件时,如果文件名是中文会被直接过滤掉,以下是TCPDF不能保存中文文件名的解决方法: 打开tcpdf.php文件,找到output函数,大约在8467行 或(7554) ...

  9. 多个router和多个network

    一般搭建成功了opentack后,都会按照文档的这样创建网络 Scenario 1: one tenant, two networks, one router Scenario 2: two tena ...

  10. 255.Spring Boot+Spring Security:使用md5加密

    说明 (1)JDK版本:1.8 (2)Spring Boot 2.0.6 (3)Spring Security 5.0.9 (4)Spring Data JPA 2.0.11.RELEASE (5)h ...