TensorFlow tf.gradients的用法详细解析以及具体例子
tf.gradients
官方定义:
tf.gradients(
ys,
xs,
grad_ys=None,
name='gradients',
stop_gradients=None,
)
Constructs symbolic derivatives of sum of ys w.r.t. x in xs.
ys and xs are each a Tensor or a list of tensors. grad_ys is a list of Tensor, holding the gradients received by theys. The list must be the same length as ys.
gradients() adds ops to the graph to output the derivatives of ys with respect to xs. It returns a list of Tensor of length len(xs) where each tensor is the sum(dy/dx) for y in ys.
grad_ys is a list of tensors of the same length as ys that holds the initial gradients for each y in ys. When grad_ysis None, we fill in a tensor of '1's of the shape of y for each y in ys. A user can provide their own initial grad_ys to compute the derivatives using a different initial gradient for each y (e.g., if one wanted to weight the gradient differently for each value in each y).
stop_gradients is a Tensor or a list of tensors to be considered constant with respect to all xs. These tensors will not be backpropagated through, as though they had been explicitly disconnected using stop_gradient. Among other things, this allows computation of partial derivatives as opposed to total derivatives.
翻译:
1. xs和ys可以是一个张量,也可以是张量列表,tf.gradients(ys,xs) 实现的功能是求ys(如果ys是列表,那就是ys中所有元素之和)关于xs的导数(如果xs是列表,那就是xs中每一个元素分别求导),返回值是一个与xs长度相同的列表。
例如ys=[y1,y2,y3], xs=[x1,x2,x3,x4],那么tf.gradients(ys,xs)=[d(y1+y2+y3)/dx1,d(y1+y2+y3)/dx2,d(y1+y2+y3)/dx3,d(y1+y2+y3)/dx4].具体例子见下面代码第16-17行。
2. grad_ys 是ys的加权向量列表,和ys长度相同,当grad_ys=[q1,q2,g3]时,tf.gradients(ys,xs,grad_ys)=[d(g1*y1+g2*y2+g3*y3)/dx1,d(g1*y1+g2*y2+g3*y3)/dx2,d(g1*y1+g2*y2+g3*y3)/dx3,d(g1*y1+g2*y2+g3*y3)/dx4].具体例子见下面代码第19-21行。
3. stop_gradients使得指定变量不被求导,即视为常量,具体的例子见官方例子,此处省略。
import tensorflow as tf
w1 = tf.Variable([[1,2]])
w2 = tf.Variable([[3,4]])
res = tf.matmul(w1, [[2],[1]]) #ys必须与xs有关,否则会报错
# grads = tf.gradients(res,[w1,w2])
#TypeError: Fetch argument None has invalid type <class 'NoneType'> # grads = tf.gradients(res,[w1])
# # Result [array([[2, 1]])] res2a=tf.matmul(w1, [[2],[1]])+tf.matmul(w2, [[3],[5]])
res2b=tf.matmul(w1, [[2],[4]])+tf.matmul(w2, [[8],[6]]) # grads = tf.gradients([res2a,res2b],[w1,w2])
#result:[array([[4, 5]]), array([[11, 11]])] grad_ys=[tf.Variable([[1]]),tf.Variable([[2]])]
grads = tf.gradients([res2a,res2b],[w1,w2],grad_ys=grad_ys)
# Result: [array([[6, 9]]), array([[19, 17]])] with tf.Session() as sess:
tf.global_variables_initializer().run()
re = sess.run(grads)
print(re)
TensorFlow tf.gradients的用法详细解析以及具体例子的更多相关文章
- jquery.cookie用法详细解析,封装的操作cookie的库有jquery.cookie.js
jquery.cookie用法详细解析 需要注意存入cookie前,对数据进行序列化, 得到后在反序列化: 熟练运用:JSON.stringify();和JSON.parse(): 通常分为如下几个步 ...
- jquery.cookie用法详细解析
本篇文章主要是对jquery.cookie的用法进行了详细的分析介绍,需要的朋友可以过来参考下,希望对大家有所帮助 Cookie是由服务器端生成,发送给User-Agent(一般是浏览器),浏览器会将 ...
- JQUERY dialog的用法详细解析
本篇文章主要是对JQUERY中dialog的用法进行了详细的分析介绍,需要的朋友可以过来参考下,希望对大家有所帮助 今天用到了客户端的对话框,把 jQuery UI 中的对话框学习了一下. 准备 jQ ...
- c++中new的三种用法详细解析
转载至: http://www.jb51.net/article/41524.htm 以下的是对c++中new的三种使用方法进行了详细的分析介绍,需要的朋友可以过来参考下,希望对大家有所帮助. 一. ...
- PHP引用符&的用法详细解析
本文转自:http://blog.csdn.net/vip_linux/article/details/10206091PHP中引用符&的用法.关于php的引用(就是在变量或者函数.对象等前面 ...
- linux mount命令的用法详细解析
挂接命令(mount)首先,介绍一下挂接(mount)命令的使用方法,mount命令参数非常多,这里主要讲一下今天我们要用到的.命令格式:mount [-t vfstype] [-o options] ...
- jquery.cookie实战用法详细解析
Cookie是由服务器端生成,发送给User-Agent(一般是浏览器),浏览器会将Cookie的key/value保存到某个目录下的文本文件内,下次请求同一网站时就发送该Cookie给服务器(前提是 ...
- 2:jquery.cookie用法详细解析
一个轻量级的cookie 插件,可以读取.写入.删除 cookie. jquery.cookie.js 的配置 首先包含jQuery的库文件,在后面包含 jquery.cookie.js 的库文件. ...
- Pytorch中torch.autograd ---backward函数的使用方法详细解析,具体例子分析
backward函数 官方定义: torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph ...
随机推荐
- 开源APM系统skywalking介绍与使用
介绍 SkyWalking 创建与2015年,提供分布式追踪功能.从5.x开始,项目进化为一个完成功能的Application Performance Management系统.他被用于追踪.监控和诊 ...
- 563. Binary Tree Tilt
https://leetcode.com/problems/binary-tree-tilt/description/ 挺好的一个题目,审题不清的话很容易做错.主要是tilt of whole tre ...
- zabbix企业级监控dell硬件服务状态
监控dell服务的硬件状态,一般有两种方式 第一,在操作熊上安装OMSA,编写脚本调用omreport命令进行监控 第二.使用IDRAC,只需开启在IARAC上的SNMP,zabbix通过snmp进行 ...
- Django--post提交表单内容
本节目标:①.提交表单内容②.通过客户端提交表单新增一篇文章③.通过Django的forms组件来完成新增一篇文章 =======提交表单内容======== 1.前端html:login.html ...
- [sublime] 利用sublime搭建C/C++编译器
gcc/g++配置 先去下载TDM-GCC安装包,这里附下载地址(可能会有弹出界面,不用管他). 现在c盘中建立文件夹 g++,然后以管理员运行,点击Create傻瓜式安装, 这里要改一下安装路径,保 ...
- URL控制器
自定义路由 from django.conf.urls import url from app01 import views urlpatterns = [ url(r'^books/$', view ...
- IO多路复用,同步,异步,阻塞和非阻塞 区别(转)
转自:http://www.cnblogs.com/aspirant/p/6877350.html?utm_source=itdadao&utm_medium=referral 同步.异步 是 ...
- BZOJ1386 : [Baltic2000]Stickers
显然每一位的限制独立,对于每一位求出仅限制该位下的最大数,然后求最小值即可. 假设当前要求数字$d$的答案: 考虑填数字的过程,可以看作依次考虑一个序列中的每个数,当前缀和$<0$时退出. 设$ ...
- 181102 Python环境搭建(安装Sublime Text3)
利用Pycharm来编写.执行python代码是一个不错的选择,Pycharm的安装的确也很方便.但是偶然看到别人用Sublime Text来编写.执行代码,觉得很酷.所以自己动手搭建环境. 1. 下 ...
- Android系统架构及内核简介
(来源于ThinkPHP) Android是Google公司开发的基于Linux平台的开源手机操作系统,它包括操作系统.中间件.用户界面和应用程序,而且不存在任何以往阻碍移 动产业创新的专利权障碍,并 ...