3235: [Ahoi2013]好方的蛇

链接

分析:

  可以求出以每个点为顶点的满足条件的矩形有多少个,单调栈求。设为sum。

  然后对这个数组进行二维前缀和,可以求出每个矩阵内,以右下角、左下角为端点的矩形有多少个,分别设为f,g。

  然后可以枚举一个点(x,y),计算有多少个矩形的左上角是这个点,然后分别计算x上面的矩形,和y左面的矩形,与它不相交。此时一个每个矩形都和它左上角右上角的矩形计算了两次,减去即可。

  调来调去,最后发现模数多写了个0。。。

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int mod = , N = ;
int a[N][N], f[N][N], g[N][N], u[N];
struct Node{ int x, sum, len; } sk[N];
char s[N]; int main() {
int n = read();
for (int i = ; i <= n; ++i) {
scanf("%s", s + );
for (int j = ; j <= n; ++j) a[i][j] = s[j] == 'B';
}
int top = , sum = , ans = ;
memset(u, , sizeof(u));
for (int k, i = ; i <= n; ++i) {
for (int j = ; j <= n; ++j) u[j] = a[i][j] ? u[j] + : ;
top = sum = ;
for (int j = ; j <= n; ++j) {
k = ;
while (top && sk[top].x > u[j]) k += sk[top].len, sum -= sk[top--].sum;
sk[++top] = (Node){u[j], u[j] * k, k};
sum += sk[top].sum - a[i][j];
f[i][j] = f[i - ][j] + f[i][j - ] - f[i - ][j - ] + sum; f[i][j] %= mod;
sum += a[i][j];
}
} memset(u, , sizeof(u));
for (int k, i = ; i <= n; ++i) {
for (int j = ; j <= n; ++j) u[j] = a[i][j] ? u[j] + : ;
top = sum = ;
for (int j = n; j; --j) {
k = ;
while (top && sk[top].x > u[j]) k += sk[top].len, sum -= sk[top--].sum;
sk[++top] = (Node){u[j], u[j] * k, k};
sum += sk[top].sum - a[i][j];
g[i][j] = g[i - ][j] + g[i][j + ] - g[i - ][j + ] + sum; g[i][j] %= mod;
sum += a[i][j];
}
} memset(u, , sizeof(u));
for (int k, i = n; i; --i) {
for (int j = ; j <= n; ++j) u[j] = a[i][j] ? u[j] + : ;
top = sum = ;
for (int j = n; j; --j) {
k = ;
while (top && sk[top].x > u[j]) k += sk[top].len, sum -= sk[top--].sum;
sk[++top] = (Node){u[j], u[j] * k, k};
sum += sk[top].sum - a[i][j];
ans += sum * f[n][j - ] + sum * f[i - ][n] - sum * f[i - ][j - ]; ans %= mod;
sum += a[i][j];
}
} memset(u, , sizeof(u));
for (int k, i = n; i; --i) {
for (int j = ; j <= n; ++j) u[j] = a[i][j] ? u[j] + : ;
top = sum = ;
for (int j = ; j <= n; ++j) {
k = ;
while (top && sk[top].x > u[j]) k += sk[top].len, sum -= sk[top--].sum;
sk[++top] = (Node){u[j], u[j] * k, k};
sum += sk[top].sum - a[i][j];
ans = (ans - sum * g[i - ][j + ] % mod + mod) % mod;
sum += a[i][j];
}
}
cout << (ans + mod) % mod;
return ;
}

3235: [Ahoi2013]好方的蛇的更多相关文章

  1. 【BZOJ 3235】 3235: [Ahoi2013]好方的蛇 (单调栈+容斥原理)

    3235: [Ahoi2013]好方的蛇 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 187  Solved: 95 Description 有一天, ...

  2. BZOJ 3235: [Ahoi2013]好方的蛇

    BZOJ 3235: [Ahoi2013]好方的蛇 标签(空格分隔): OI-BZOJ OI-DP OI-容斥原理 Time Limit: 10 Sec Memory Limit: 64 MB Des ...

  3. BZOJ3235 [Ahoi2013]好方的蛇 【单调栈 + dp】

    题目链接 BZOJ3235 题解 求出每个点为顶点,分别求出左上,左下,右上,右下的矩形的个数\(g[i][j]\) 并预处理出\(f[i][j]\)表示点\((i,j)\)到四个角的矩形内合法矩形个 ...

  4. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  5. 基于AT89C51单片机的贪吃蛇电子游戏(仿真)

    有关贪吃蛇的历史发展可以看一下这个网址,贪吃蛇最初的设计和现在并不相同..http://www.techweb.com.cn/internet/2013-02-21/1278055.shtml 该项目 ...

  6. 小菜学习Winform(一)贪吃蛇

    前言 说到贪吃蛇,大家可能小时候都玩过,小菜最近在整理Winfrom的学习系列,那我觉得有兴趣才会有学习,就从这个小游戏讲起吧. 实现 其实我刚开始学习编程的时候,感觉写个贪吃蛇的程序会很难,因为涉及 ...

  7. [AHOI2013]找硬币(搜索)

    [Ahoi2013]找硬币 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 348  Solved: 114[Submit][Status] Descri ...

  8. 使用TypeScript实现简单的HTML5贪吃蛇游戏

    TypeScript是一种由微软开发的自由和开源的编程语言.它是JavaScript的一个超集,而且本质上向这个语言添加了可选的静态类型和基于类的面向对象编程.安德斯·海尔斯伯格,C#的首席架构师,已 ...

  9. BZOJ 3233: [Ahoi2013]找硬币( dp )

    dp(x)表示最大面值为x时需要的最少硬币数. 枚举x的质因数p,  dp(x) = min( dp(x/p) - (p-1) * sigma[a[i]/x] ). ----------------- ...

随机推荐

  1. teradata 查询创建表的时间

    如何查询teradata创建表的时间? select tablename,CreateTimeStamp from dbc.tables ---dbc的table,user是在dbc内的吗?具体不清楚 ...

  2. RHEL7: How to configure a rc-local service

    问题: linux7 /etc/rc.local 不生效: [root@bogon mysql3306]# uname -aLinux bogon 3.10.0-862.el7.x86_64 #1 S ...

  3. flask 的管理模块的功能add_template_global、send_from_directory

    add_template_global方法 全局模板函数 add_template_global 装饰器直接将函数注册为模板全局函数. add_template_global 这个方式是自定义的全局函 ...

  4. ARC下block使用情况

    ARC与MRC的block有着一些区别,笔记整理ARC的block,仅仅是自己参考的笔记,详情请参考 http://www.cnbluebox.com/?p=255 在开始之前,请新建一个Model类 ...

  5. [翻译] ZLHistogramAudioPlot

    ZLHistogramAudioPlot A hardware-accelerated audio visualization view using EZAudio, inspired by Audi ...

  6. 铁乐学python_Day40_进程池

    进程之间的数据共享 基于消息传递的并发编程是大势所趋, 即便是使用线程,推荐做法也是将程序设计为大量独立的线程集合,通过消息队列交换数据. 这样极大地减少了对使用锁和其他同步手段的需求,还可以扩展到分 ...

  7. python3: 字符串和文本(4)

    16. 以指定列宽格式化字符串[textwrap] https://docs.python.org/3.6/library/textwrap.html#textwrap.TextWrapper 假如你 ...

  8. Memcahce和Redis比较

    一.Memcache 1.     memecache 把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小redis有部份存在硬盘上,这样能保证数据的持久性. 2.      Memcache ...

  9. MySQL知识总结(四)二进制日志

    1 定义 bin-log日志记录了所有的DDL和DML的语句,但不包括查询的语句,语句以事件的方式保存,描述了数据的更改过程,此日志对发生灾难时数据恢复起到了极为重要的作用. 2 开启 mysql默认 ...

  10. 【ansible】Windows开启远程控制错误解决方案:无法检查防火墙状态

    这个在老版本的Windows系统才有这种bug.例如Windows 2008 R2和Windows 7,如果你的系统的阿里云的Windows server 2008 R2,无需装这个,好像阿里云的系统 ...