[Luogu 2169] 正则表达式
[Luogu 2169] 正则表达式
感谢 0xis 推题。
记忆中很久没有过一遍写过一题了…
别被题目名称蒙骗!这不是正则表达式题目!和字符(串)处理一点关系都没有!这是个图论题啊喂!
题都没急,Capella 你急啥?
由题意得,能够本地传输的机子们处于同一强连通分量,于是 Tarjan 一遍,缩点。缩的过程中,对于两个 SCC 之间的边,选短的加。
我这里用一个 map,记录边(pair<int, int>)到边权(int)的映射,然后用 map 判断是否加边就好了。
最短路,跑一个 Dijkstra 即可(珍爱生命,远离某死亡算法不解释)。
输出 1 所在的 SCC 到 n 所在的 SCC 的路径。
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <map>
#include <queue>
#include <stack>
#define nullptr NULL
const int MAXN = 200010;
int n, m;
namespace SCC
{
bool exist[MAXN], vis[MAXN];
int num, sum, DFN[MAXN], low[MAXN], SCC[MAXN], dist[MAXN];
std :: stack<int> S;
struct Node
{
int index, dist;
Node(int index, int dist): index(index), dist(dist) {}
bool operator <(const Node& rhs) const
{
return dist > rhs.dist;
}
};
struct Graph
{
struct Edge
{
int to, w;
Edge *next;
Edge(int to, int w, Edge* next): to(to), w(w), next(next) {}
~Edge(void)
{
if(next != nullptr)
delete next;
}
}*head[MAXN];
Graph(int n)
{
std :: fill(head + 1, head + n + 1, (Edge*)nullptr);
}
~Graph(void)
{
for(int i = 1; i <= n; ++i)
delete head[i];
}
void AddEdge(int u, int v, int w)
{
head[u] = new Edge(v, w, head[u]);
}
}*G, *Gnew;
void Tarjan(int u)
{
S.push(u);
exist[u] = true;
DFN[u] = low[u] = ++num;
int v;
for(Graph :: Edge *i = G -> head[u]; i != nullptr; i = i -> next)
if(!DFN[v = i -> to])
{
Tarjan(v);
low[u] = std :: min(low[u], low[v]);
}
else if(exist[v])
low[u] = std :: min(low[u], DFN[v]);
if(DFN[u] == low[u])
{
++sum;
do
{
exist[v = S.top()] = false;
S.pop();
SCC[v] = sum;
}
while(u ^ v);
}
}
void Shrink(void)
{
std :: map<std :: pair<int, int>, int> QAQ;
std :: pair<int, int> t;
Gnew = new Graph(sum);
for(int u = 1, v; u <= n; ++u)
for(Graph :: Edge *i = G -> head[u]; i != nullptr; i = i -> next)
if(!QAQ.count(t = std :: make_pair(SCC[u], SCC[v = i -> to])) || i -> w < QAQ[t])
{
Gnew -> AddEdge(SCC[u], SCC[v], i -> w);
QAQ[t] = i -> w;
}
}
void Dijkstra(int S)
{
std :: priority_queue<Node> Q;
memset(dist, 0x3f, sizeof dist);
Q.push(Node(S, dist[S] = 0));
while(!Q.empty())
{
int u = Q.top().index, v;
Q.pop();
if(!vis[u])
{
vis[u] = true;
for(Graph :: Edge *i = Gnew -> head[u]; i != nullptr; i = i -> next)
if(dist[v = i -> to] > dist[u] + i -> w)
Q.push(Node(v, dist[v] = dist[u] + i -> w));
}
}
}
void Solve(void)
{
for(int i = 1; i <= n; ++i)
if(!DFN[i])
Tarjan(i);
Shrink();
Dijkstra(SCC[1]);
printf("%d\n", dist[SCC[n]]);
}
}
int main(void)
{
scanf("%d %d", &n, &m);
SCC :: G = new SCC :: Graph(n);
for(int i = 1, u, v, w; i <= m; ++i)
{
scanf("%d %d %d", &u, &v, &w);
SCC :: G -> AddEdge(u, v, w);
}
SCC :: Solve();
return 0;
}
谢谢阅读。
[Luogu 2169] 正则表达式的更多相关文章
- 【luogu P2169 正则表达式】 题解
题目链接:https://www.luogu.org/problemnew/show/P2169 tarjan缩点 + SPFA 缩完点之后加边注意别写错. 也可以不用建两个图,可以在一张图上判断是否 ...
- JS正则表达式常用总结
正则表达式的创建 JS正则表达式的创建有两种方式: new RegExp() 和 直接字面量. //使用RegExp对象创建 var regObj = new RegExp("(^\\s+) ...
- Python高手之路【五】python基础之正则表达式
下图列出了Python支持的正则表达式元字符和语法: 字符点:匹配任意一个字符 import re st = 'python' result = re.findall('p.t',st) print( ...
- C# 正则表达式大全
文章导读 正则表达式的本质是使用一系列特殊字符模式,来表示某一类字符串.正则表达式无疑是处理文本最有力的工具,而.NET提供的Regex类实现了验证正则表达式的方法.Regex 类表示不可变(只读)的 ...
- C#基础篇 - 正则表达式入门
1.基本概念 正则表达式(Regular Expression)就是用事先定义好的一些特定字符(元字符)或普通字符.及这些字符的组合,组成一个“规则字符串”,这个“规则字符串”用来判断我们给定的字符串 ...
- JavaScript正则表达式,你真的知道?
一.前言 粗浅的编写正则表达式,是造成性能瓶颈的主要原因.如下: var reg1 = /(A+A+)+B/; var reg2 = /AA+B/; 上述两个正则表达式,匹配效果是一样的,但是,效率就 ...
- Python 正则表达式入门(中级篇)
Python 正则表达式入门(中级篇) 初级篇链接:http://www.cnblogs.com/chuxiuhong/p/5885073.html 上一篇我们说在这一篇里,我们会介绍子表达式,向前向 ...
- 【JS基础】正则表达式
正则表达式的() [] {}有不同的意思. () 是为了提取匹配的字符串.表达式中有几个()就有几个相应的匹配字符串. (\s*)表示连续空格的字符串. []是定义匹配的字符范围.比如 [a-zA-Z ...
- JavaScript 正则表达式语法
定义 JavaScript定义正则表达式有两种方法. 1.RegExp构造函数 var pattern = new RegExp("[bc]at","i"); ...
随机推荐
- windows redis 后台运行
1. 进入 DOS窗口2. 在进入Redis的安装目录3. 输入:redis-server --service-install redis.windows.conf --loglevel verbos ...
- Python开发【第五篇】迭代器、生成器、递归函数、二分法
阅读目录 一.迭代器 1. 迭代的概念 #迭代器即迭代的工具(自定义的函数),那什么是迭代呢? #迭代:指一个重复的过程,每次重复都可以称之为一次迭代,并且每一次重复的结果是下一个迭代的初始值(例如: ...
- C++操作mysql方法总结(3)
C++通过mysql++操作mysql的方式 使用vs2013和64位的msql 5.6.16进行操作 项目中使用的数据库名和表数据请参考C++操作mysql方法总结(1)中的介绍 Mysql ...
- 循环队列的C语言实现
生活中有很多队列的影子,比如打饭排队,买火车票排队问题等,可以说与时间相关的问题,一般都会涉及到队列问题:从生活中,可以抽象出队列的概念,队列就是一个能够实现“先进先出”的存储结构.队列分为链式队列和 ...
- asp.net简述WP开发模式
详情请参考菜鸟教程:http://www.runoob.com/aspnet/aspnet-tutorial.html 1.ASP.NET 是一个使用 HTML.CSS.JavaScript 和服务器 ...
- 5G时代
电信语音承载在CDMA2G网络--所以2G基本没有网络 网络走fdd4g 如果5G时代来临,4g网络可能就会像3G一样的慢
- sql server数据库中raiserror函数的用法
server数据库中raiserror的作用就和asp.NET中的throw new Exception一样,用于抛出一个异常或错误.这个错误可以被程序捕捉到. raiserror的常用格式如下:ra ...
- windows多线程(六) 互斥量Mutex与关键段CriticalSection比较
一.关键段CS 和 互斥量Mutex 的相同点:都有线程拥有权 关键段和互斥量都有线程拥有权,即可以被一个线程拥有.在 前面讲关键段CS的文章中有说到,关键段结构体的第四个参数保存着拥有该关键段的线程 ...
- IPV6 简单总结
1. 转帖别人的内容 来源:https://www.2cto.com/net/201112/114937.html 2. 本地用IPV6单播地址 (包括链路本地单播地址 和 站点本地单播地址) 2.1 ...
- 在tensorflow环境下安装matplotlib
在运行程序时,报错ImportError: No module named 'matplotlib',如图.经网上查询发现是没有安装matplotlib 因此记录一下在tensorflow环境下安装m ...