P4101 [HEOI2014]人人尽说江南好
题目描述
小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏。
在过去,人们是要边玩游戏边填词的,比如这首《菩萨蛮》就是当年韦庄在玩游戏时填 的: 人 人 尽 说 江 南 好, 游 人 只 合 江 南 老。
然而我们今天不太关心人们填的词是什么,我们只关心小 Z 那时玩过的游戏。游戏的规 则是这样的,给定 N 堆石子,每堆石子一开始只有 1 个。小 Z 和他的小伙伴轮流操作, 小 Z 先行操作。操作可以将任意两堆石子合并成为一堆,当谁不再能操作的时候,谁就输掉了。
不过,当一堆石子堆的太高时可能发生危险,因此小 Z 和他的小伙伴规定,任何时刻任意一 堆石子的数量不能超过 m。即假如现在有两堆石子分别有 a 个和 b 个,而且 a+b>m,那么这 两堆石子就不能合成一堆。
小 Z 和他的小伙伴都是很聪明的,所以他们总是会选择对自己最有利的策略。现在小 Z 想要知道,在这种情况下,对于一个给定的 n 和 m,到底是谁能够获得胜利呢?
输入输出格式
输入格式:
本题包括多组数据 数据第一行为一个数 T,为数据组数 以下 T 行,每行两个正整数 n,m
输出格式:
输出 T 行,每行为 0 或 1,如果为 0 意为小 Z(即先手)会取得胜利,为 1 则为后手会 取得胜利。
输入输出样例
5
7 3
1 5
4 3
6 1
2 2
1
1
1
1
0
说明
对于 10%的数据, m>=n
对于 20%的数据, n,m<=10
对于 30%的数据, n,m<=50, 2*m>=n
对于 50%的数据, n,m<=100
对于 70%的数据, n,m<=1000000
对于 100%的数据, n,m<=1000000000, T<=100
Solution:
本题博弈论。
首先,合并次数最多为$n-1$,当$n\leq m$时答案直接由合并次数的奇偶判断,而当$n>m$时,最后只可能形成$\frac{n}{m}$个满的$m$堆和一个不满$m$的堆,每个$m$数量的堆合并次数为$m-1$次,而$n\%m$数量的堆合并次数为$n\%m-1$(注意当$n\%m==0$时就不需要合并了,也就不用减$1$),总合并次数为$\frac{n}{m}*(m-1)+n\%m-1+(n\%m==0)$,该式子可以将$n\%m$用$n-\frac{n}{m}*m$代换,最后次数化简得$n-\frac{n}{m}+(n\%m==0)-1$,那么答案就由最后合并次数的奇偶来判断即可。
代码:
/*Code by 520 -- 10.11*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
ll n,m; int main(){
ios::sync_with_stdio();
cin>>n;
while(cin>>n>>m) {
ll tp=n-n/m-+(n%m==);
puts(tp&?"":"");
}
return ;
}
P4101 [HEOI2014]人人尽说江南好的更多相关文章
- BZOJ 3609: [Heoi2014]人人尽说江南好
3609: [Heoi2014]人人尽说江南好 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 470 Solved: 336[Submit][Sta ...
- BZOJ3609 Heoi2014 人人尽说江南好【推理+结论】
BZOJ3609 Heoi2014 人人尽说江南好 Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时 ...
- bzoj3609 [Heoi2014]人人尽说江南好 博弈
[Heoi2014]人人尽说江南好 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 581 Solved: 420[Submit][Status][D ...
- [HEOI2014] 人人尽说江南好
[HEOI2014] 人人尽说江南好 题目大意:一个博弈游戏,地上\(n\)堆石子,每堆石子有\(1\)个,每次可以合并任意两个石子堆\(a,b\),要求\(a + b \leq m\),问先手赢还是 ...
- [BZOJ3609][Heoi2014]人人尽说江南好 结论题
Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要 ...
- bzoj3609 [Heoi2014]人人尽说江南好
Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要边玩 ...
- luoguP4101 [HEOI2014]人人尽说江南好 结论
题目大意: 给定\(n\)堆初始大小为\(1\)的石堆 每次选择两堆石子合并,特别的,合并之后的两堆石子不能\(> m\) 询问先手必赢? 不妨设我们是先手,且最后我们必胜 我们考虑构造局面\( ...
- [HEOI2014]人人尽说江南好 博弈论
题面 题面 题解 感觉这题挺神仙的,根据一些奇奇怪怪的证明可以得到: 最后的终止状态一定是\(m, m, m, m, .... n \% m\). 因此我们可以O(1)计算到终止状态所需步数,然后根据 ...
- BZOJ3609 [Heoi2014]人人尽说江南好 【博弈】
题目链接 BZOJ3609 题解 我们假设最后合成若干个\(m\),和\(n \mod m\),此时合成次数是最多的,也唯一确定胜利者 可以发现,在轮流操作的情况下,胜利者一定可以将终态变为这个状态 ...
随机推荐
- mybatis学习(一)-------XML 映射配置文件详解
XML 映射配置文件 MyBatis 的配置文件包含了会深深影响 MyBatis 行为的设置(settings)和属性(properties)信息.文档的顶层结构如下: configuration 配 ...
- HTML5新增核心工具——本地存储
除了Canvas元素外,HMTL5另外一个新增的非常重要的功能是可以在客户端本地存储数据库的Web Storage.本文就介绍下Web Storage以及SQLLite操作. Web Storage分 ...
- WebGL之sprite精灵效果显式数字贴图
接着前一篇<WebGL实现sprite精灵效果的GUI控件>,我们继续开发我们的数字系统GUI控件,因为这套数字系统是基于sprite效果的,所以数字随相机转动而旋转(永远面对相机),随场 ...
- python图像处理(1)图像的打开与保存
使用python进行图像处理时有三种库可以使用分别是:PIL.matplotlib.pyplot.opencv(opencv未接触) 注意:matplotlib读取进来的图片是unit8,0-255范 ...
- SpringCloud使用Feign出现java.lang.ClassNotFoundException: org.springframework.cloud.client.loadbalancer.LoadBalancedRetryFactory异常
废话不多说!!! 在SpringCloud项目中配置了Feign来调用restful接口,项目启动的时候报错,报错信息如下: 找不到org.springframework.cloud.client.l ...
- 多个EXCEL文件合并成一个
Python的numpy处理起来会比较方便,有空实现一下,这里是Excel内部代码的方式: 合并方法如下: 1.需要把多个excel表都放在同一个文件夹里面,并在这个文件夹里面新建一个excel.如图 ...
- Netty源码分析第2章(NioEventLoop)---->第4节: NioEventLoop线程的启动
Netty源码分析第二章: NioEventLoop 第四节: NioEventLoop线程的启动 之前的小节我们学习了NioEventLoop的创建以及线程分配器的初始化, 那么NioEvent ...
- SSZipArchive解压失败的原因
SSZipArchive 解压失败的原因是路径不对解压失败后,修正路径后再次解压就会出现解压失败的情况,代理方法也不会走也没有日志输出.解决方法就是删除手机上的软件再次运行就可以了.这个问题也就在内部 ...
- PropertyGrid中的枚举显示为中文
参考http://www.cnblogs.com/yank/archive/2011/09/17/2179598.html 在上述文档的基础上做了改进.从EnumConverter类派生 显示效果: ...
- PHP版本对比【转】
其他历史http://www.cnblogs.com/yjf512/p/3588466.html php5.3 改动: 1.realpath() 现在是完全与平台无关的. 结果是非法的相对路径比如FI ...