P4101 [HEOI2014]人人尽说江南好
题目描述
小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏。
在过去,人们是要边玩游戏边填词的,比如这首《菩萨蛮》就是当年韦庄在玩游戏时填 的: 人 人 尽 说 江 南 好, 游 人 只 合 江 南 老。
然而我们今天不太关心人们填的词是什么,我们只关心小 Z 那时玩过的游戏。游戏的规 则是这样的,给定 N 堆石子,每堆石子一开始只有 1 个。小 Z 和他的小伙伴轮流操作, 小 Z 先行操作。操作可以将任意两堆石子合并成为一堆,当谁不再能操作的时候,谁就输掉了。
不过,当一堆石子堆的太高时可能发生危险,因此小 Z 和他的小伙伴规定,任何时刻任意一 堆石子的数量不能超过 m。即假如现在有两堆石子分别有 a 个和 b 个,而且 a+b>m,那么这 两堆石子就不能合成一堆。
小 Z 和他的小伙伴都是很聪明的,所以他们总是会选择对自己最有利的策略。现在小 Z 想要知道,在这种情况下,对于一个给定的 n 和 m,到底是谁能够获得胜利呢?
输入输出格式
输入格式:
本题包括多组数据 数据第一行为一个数 T,为数据组数 以下 T 行,每行两个正整数 n,m
输出格式:
输出 T 行,每行为 0 或 1,如果为 0 意为小 Z(即先手)会取得胜利,为 1 则为后手会 取得胜利。
输入输出样例
5
7 3
1 5
4 3
6 1
2 2
1
1
1
1
0
说明
对于 10%的数据, m>=n
对于 20%的数据, n,m<=10
对于 30%的数据, n,m<=50, 2*m>=n
对于 50%的数据, n,m<=100
对于 70%的数据, n,m<=1000000
对于 100%的数据, n,m<=1000000000, T<=100
Solution:
本题博弈论。
首先,合并次数最多为$n-1$,当$n\leq m$时答案直接由合并次数的奇偶判断,而当$n>m$时,最后只可能形成$\frac{n}{m}$个满的$m$堆和一个不满$m$的堆,每个$m$数量的堆合并次数为$m-1$次,而$n\%m$数量的堆合并次数为$n\%m-1$(注意当$n\%m==0$时就不需要合并了,也就不用减$1$),总合并次数为$\frac{n}{m}*(m-1)+n\%m-1+(n\%m==0)$,该式子可以将$n\%m$用$n-\frac{n}{m}*m$代换,最后次数化简得$n-\frac{n}{m}+(n\%m==0)-1$,那么答案就由最后合并次数的奇偶来判断即可。
代码:
/*Code by 520 -- 10.11*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
ll n,m; int main(){
ios::sync_with_stdio();
cin>>n;
while(cin>>n>>m) {
ll tp=n-n/m-+(n%m==);
puts(tp&?"":"");
}
return ;
}
P4101 [HEOI2014]人人尽说江南好的更多相关文章
- BZOJ 3609: [Heoi2014]人人尽说江南好
3609: [Heoi2014]人人尽说江南好 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 470 Solved: 336[Submit][Sta ...
- BZOJ3609 Heoi2014 人人尽说江南好【推理+结论】
BZOJ3609 Heoi2014 人人尽说江南好 Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时 ...
- bzoj3609 [Heoi2014]人人尽说江南好 博弈
[Heoi2014]人人尽说江南好 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 581 Solved: 420[Submit][Status][D ...
- [HEOI2014] 人人尽说江南好
[HEOI2014] 人人尽说江南好 题目大意:一个博弈游戏,地上\(n\)堆石子,每堆石子有\(1\)个,每次可以合并任意两个石子堆\(a,b\),要求\(a + b \leq m\),问先手赢还是 ...
- [BZOJ3609][Heoi2014]人人尽说江南好 结论题
Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要 ...
- bzoj3609 [Heoi2014]人人尽说江南好
Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要边玩 ...
- luoguP4101 [HEOI2014]人人尽说江南好 结论
题目大意: 给定\(n\)堆初始大小为\(1\)的石堆 每次选择两堆石子合并,特别的,合并之后的两堆石子不能\(> m\) 询问先手必赢? 不妨设我们是先手,且最后我们必胜 我们考虑构造局面\( ...
- [HEOI2014]人人尽说江南好 博弈论
题面 题面 题解 感觉这题挺神仙的,根据一些奇奇怪怪的证明可以得到: 最后的终止状态一定是\(m, m, m, m, .... n \% m\). 因此我们可以O(1)计算到终止状态所需步数,然后根据 ...
- BZOJ3609 [Heoi2014]人人尽说江南好 【博弈】
题目链接 BZOJ3609 题解 我们假设最后合成若干个\(m\),和\(n \mod m\),此时合成次数是最多的,也唯一确定胜利者 可以发现,在轮流操作的情况下,胜利者一定可以将终态变为这个状态 ...
随机推荐
- SpringBoot日记——SpringMvc自动配置与扩展篇
为了让SpringBoot保持对SpringMVC的全面支持和扩展,而且还要维持SpringBoot不写xml配置的优势,我们需要添加一些简单的配置类即可实现: 通常我们使用的最多的注解是: @Bea ...
- Linux shell 编写(2)
shell脚本中变量的定义和使用: 1.shell中变量名可以由字母,数字,下划线组成,但数字不能作为变量名的第一个字符. 2.通过赋值符号"="来定义一个变量 如:myname= ...
- 算法设计:UNION-FIND算法实现
在上周的算法设计课程中,我们学习了UNION-FIND算法,该算法用来对不相交集进行查询与合并操作,但任何优秀的算法都必须要用实际的代码来进行实现,接下来我们就来看看具体的代码实现 1. 不相关集数据 ...
- TPO-19 C2 Cafeteria's Food Policy
TPO-19 C2 Cafeteria's Food Policy 第 1 段 1.Listen to a conversation between a student and the directo ...
- Received non-all-whitespace CHARACTERS or CDATA event in nextTag(). ,无法整齐打印验证错误。 解析XML文档出现的问题
在启动keyCloak,想要在standAlone模式下切换数据库,修改standAlone.xml文件时. 在bin/目录下启动standAlone模式出现错误: 10:07:24,799 INFO ...
- 微软Word制作自己的模板
我们在用Word的时候,很多时候需要一定的格式. 这个时候,*.dotx文件出场了!它将带给我们自己的模板. 步骤: 首先,新建一个文档,选择空白文档: 图片大就大吧,不要在意这些细节. 编辑一下,保 ...
- Deep learning for visual understanding: A review 视觉理解中的深度学习:回顾 之一
Deep learning for visual understanding: A review 视觉理解中的深度学习:回顾 ABSTRACT: Deep learning algorithms ar ...
- Plasma Cash 合约解读
作者介绍 虫洞社区·签约作者 steven bai Plasma Cash 合约解读 Plasma Cash 合约解读 1. 合约代码 2. 合约文件简单介绍 3. Plasma Cash 的基础数据 ...
- 随手记录-linux-添加epel源
下载各种yum源 https://opsx.alibaba.com/mirror https://blog.csdn.net/harbor1981/article/details/51135623
- PHP Filter 函数 日常可用
PHP Filter 函数 PHP Filesystem PHP FTP PHP Filter 简介 PHP 过滤器用于对来自非安全来源的数据(比如用户输入)进行验证和过滤. 安装 filter 函数 ...