对每行每列分别建一个点,问题转为选n+m条边,并给每条边选一个点覆盖,使每个点都被覆盖。也就是最小生成环套树森林。

用和Kruskal一样的方法,将边从小到大排序,若一条边被选入后连通块仍然是一个环套树(即边数不多于点数)则连上。证明大致同Kruskal。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int N=;
ll ans;
int n,m,x,tot,fa[N],cnt[N],sz[N];
struct E{ int x,y,z; }e[N];
bool operator <(const E &a,const E &b){ return a.z<b.z; } int get(int x){ return (fa[x]==x) ? x : fa[x]=get(fa[x]); }
void uni(int x,int y){ fa[x]=y; sz[y]+=sz[x]; cnt[y]+=cnt[x]+; } int main(){
freopen("bzoj4883.in","r",stdin);
freopen("bzoj4883.out","w",stdout);
scanf("%d%d",&n,&m);
rep(i,,n) rep(j,,m) scanf("%d",&x),e[++tot]=(E){i,j+n,x};
sort(e+,e+tot+);
rep(i,,n+m) fa[i]=i,sz[i]=;
rep(i,,n*m){
int x=get(e[i].x),y=get(e[i].y);
if (x!=y) { if (cnt[x]+cnt[y]+<=sz[x]+sz[y]) ans+=e[i].z,uni(x,y); }
else if (cnt[x]<sz[x]) ans+=e[i].z,cnt[x]++;
}
printf("%lld\n",ans);
return ;
}

[BZOJ4883][Lydsy1705月赛]棋盘上的守卫(Kruskal)的更多相关文章

  1. 【题解】BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小生成基环森林)

    [题解]BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小生成基环森林) 神题 我的想法是,每行每列都要有匹配且一个点只能匹配一个,于是就把格点和每行每列建点出来做一个最小生成树,但是不 ...

  2. BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小环套树森林&优化定向问题)

    4883: [Lydsy1705月赛]棋盘上的守卫 Time Limit: 3 Sec  Memory Limit: 256 MBSubmit: 475  Solved: 259[Submit][St ...

  3. [BZOJ4883][Lydsy1705月赛]棋盘上的守卫[最小基环树森林]

    题意 有一大小为 \(n*m\) 的棋盘,要在一些位置放置一些守卫,每个守卫只能保护当前行列之一,同时在每个格子放置守卫有一个代价 \(w\) ,问要使得所有格子都能够被保护,需要最少多少的代价. \ ...

  4. bzoj4883 [Lydsy1705月赛]棋盘上的守卫 最小生成基环树森林

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4883 题解 每一行和每一列都必须要被覆盖. 考虑对于每一行和每一列都建立一个点,一行和一列之间 ...

  5. 【BZOJ4883】 [Lydsy1705月赛]棋盘上的守卫(最小生成树,基环树)

    传送门 BZOJ Solution 考虑一下如果把行,列当成点,那么显然这个东西就是一个基环树对吧. 直接按照\(Kruscal\)那样子搞就好了. 代码实现 代码戳这里

  6. BZOJ 4883: [Lydsy1705月赛]棋盘上的守卫 最小生成树 + 建模

    Description 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须恰好放置一个纵向守卫.每个位置放置守卫的代价是不一样的,且每个位置 ...

  7. bzoj 4883 [Lydsy1705月赛]棋盘上的守卫——并查集(思路!)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4883 把各行和各列看成n+m个点. 如果一下能防守行和列,就是最大匹配了.这是每两个左右部点 ...

  8. 【BZOJ4883】[Lydsy2017年5月月赛]棋盘上的守卫 KM算法

    [BZOJ4883][Lydsy2017年5月月赛]棋盘上的守卫 Description 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须 ...

  9. [bzoj4883][Lydsy2017年5月月赛]棋盘上的守卫

    来自FallDream的博客,未经允许,请勿转载, 谢谢. 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须恰好放置一个纵向守卫.每个位置 ...

随机推荐

  1. ORB_SLAM2 源码阅读 ORB_SLAM2::Initializer::ComputeF21 (OpenCV 细节)

    ORB_SLAM2 计算 F21 的代码是这样的. cv::Mat Initializer::ComputeF21(const vector<cv::Point2f> &vP1,c ...

  2. 【工具记录】Linux口令破解

    1.基础知识 /etc/passwd:记录着用户的基本属性,所有用户可读 字段含义如下: 用户名:口令:用户标识号:组标识号:注释性描述:主目录:登录Shell eg: root:x:0:0:root ...

  3. Wannacry样本取证特征与清除

    一.取证特征 1)网络域名特征 http://www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com 2)文件特征 母体文件 mssecsvc.exe c: ...

  4. 关于oracle数据库死锁的检查方法

    一.数据库死锁的现象程序在执行的过程中,点击确定或保存按钮,程序没有响应,也没有出现报错. 二.死锁的原理当对于数据库某个表的某一列做更新或删除等操作,执行完毕后该条语句不提交,另一条对于这一列数据做 ...

  5. JavaScript 简单吗

    英文:Aurélien Hervé  译文:众成翻译/msmailcode 这里有一些 Javascript初学者应该知道的技巧和陷阱.如果你已经是专家了,顺便温习一下. Javascript也只不过 ...

  6. docker centos:latest 使用 sshd

    一.术语 1.容器 很多用户在接触Docker 之初都会认为容器就是一种轻量级的虚拟机,但实际上,容器和虚拟机有非常大的区别.从根本形态上来看,容器其实就是运行在操作系统上的一个进程,只不过加入了对资 ...

  7. acm专题---KMP模板

    KMP的子串长n,模式串长m,复杂度o(m+n),朴素做法的复杂度o((n-m+1)*m) 觉得大话数据结果上面这个讲得特别好 改进版本的KMP leetcode 28. Implement strS ...

  8. No.10 selenium学习之路之通过元素定位获取属性

    1. implicitly_wait()隐形等待.等待页面加载完成,作用是全局的. 时间可以设置的长,短时间也没有影响.直到设置的时间耗完 时间耗完也不会报错 2.获取title值 driver.ti ...

  9. MySQL学习笔记:exists和in的区别

    一.exists函数 表示存在,常常与子查询配合使用. 用于检查子查询是否至少会返回一行数据,该子查询实际上并不返回任何数据,而是返回值True或False. 当子查询返回为真时,则外层查询语句将进行 ...

  10. 浅谈DDD

    从遇到问题开始 当人们要做一个软件系统时,一般总是因为遇到了什么问题,然后希望通过一个软件系统来解决. 比如,我是一家企业,然后我觉得我现在线下销售自己的产品还不够,我希望能够在线上也能销售自己的产品 ...