Tr A

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4604    Accepted Submission(s): 3461

Problem Description
A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
Input
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
Output
对应每组数据,输出Tr(A^k)%9973。
Sample Input
2
2 2
1 0
0 1
3 99999999
1 2 3
4 5 6
7 8 9
Sample Output
2
2686
 一个简单的矩阵快速幂,刚学 拿来练模版(网上随便找了个,可惜没找到结构体的那个)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<string.h>
#include<map>
#include<set>
#include<queue>
#include<vector>
#include<cstdlib>
typedef long long ll;
typedef unsigned long long LL;
using namespace std;
const int INF=0x3f3f3f3f;
const int num=;
const int mod=;
int N;
struct Mat{
int a[num][num];
void init(){
memset(a,,sizeof(a));
for(int i=;i<num;i++)
a[i][i]=;
}
};
//矩阵加法
Mat add(Mat a,Mat b){
Mat ans;
for(int i=;i<N;i++)
for(int j=;j<N;j++){
ans.a[i][j]=a.a[i][j]+b.a[i][j];
ans.a[i][j]=ans.a[i][j]%mod;
}
return ans;
}
//矩阵乘法
Mat mul(Mat a,Mat b){
Mat ans;
for(int i=;i<N;i++){
for(int j=;j<N;j++){
ans.a[i][j]=;
for(int k=;k<N;k++){
ans.a[i][j]+=a.a[i][k]*b.a[k][j];
}
ans.a[i][j]=ans.a[i][j]%mod;
}
}
return ans;
}
//矩阵快速幂
Mat power(Mat a,int n){
Mat ans;
ans.init();
while(n){
if(n&){
ans=mul(ans,a);
}
n=n>>;
a=mul(a,a);
}
return ans;
}
//矩阵的幂和
Mat pow_sum(Mat a,int n){
int m;
Mat ans,pre;
if(n==){
return a;
}
m=n/;
pre=pow_sum(a,m);
ans=add(pre,mul(pre,power(a,m)));
if(n&)
ans=add(ans,power(a,n));
return ans;
}
void output(Mat a){
for(int i=;i<N;i++){
for(int j=;j<N;j++){
if(j==)printf("%d",a.a[i][j]);
else printf(" %d",a.a[i][j]);
}
printf("\n");
}
}
int main(){
int tt;
int k,n;
scanf("%d",&tt);
while(tt--){
int t=;
scanf("%d%d",&n,&k);
Mat a;
N=n;
for(int i=;i<N;i++){
for(int j=;j<N;j++)
scanf("%d",&a.a[i][j]);
}
Mat ans=power(a,k);
//output(ans);
for(int i=;i<N;i++){
t=(t+ans.a[i][i])%mod;
}
printf("%d\n",t);
}
return ;
}

HDU 1575的更多相关文章

  1. HDU - 1575——矩阵快速幂问题

    HDU - 1575 题目: A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973.  Input数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n( ...

  2. HDU 1575 Tr A(矩阵高速幂)

    题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...

  3. HDU.1575 Tr A ( 矩阵快速幂)

    HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...

  4. hdu 1575 Tr A

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1575 Tr A Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和), ...

  5. HDU 1575 Tr A 【矩阵经典2 矩阵快速幂入门】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1575 Tr A Time Limit: 1000/1000 MS (Java/Others)    Me ...

  6. hdu 1575 Tr A(矩阵快速幂乘法优化算法)

    Problem Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%. Input 数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n ...

  7. HDU 1575 Tr A----矩阵相乘题。

    Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  8. hdu 1575 Tr A (二分矩阵)

    Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  9. hdu 1575 矩阵快速幂模板

    #include "iostream" #include "vector" #include "cstring" using namespa ...

随机推荐

  1. Spark-Mllib(二)基本统计

    一.基本统计量 统计向量的长度,最大值,最小值,非0个数,模1和模2,方差等 import org.apache.spark.mllib.linalg.{Vector,Vectors} import ...

  2. PLSQL登录数据库 报ORA -12154的诡异问题

    https://q.cnblogs.com/q/89420/ 现象: 1.机器上先后安装了oracle两个版本的client.在装第一个client后,plsql可以顺利连接数据库a并登录. 2.安装 ...

  3. 【网络编程/C++】修改本机ip地址

    昨天学会了编程实现获取本地网卡信息,今天再接再砺学会了修改本机ip地址.其实原理很简单就是用c++调用一下dos命令而已,不得不说,dos命令实在是太强大了,当然听说还有种修改注册表的方法,不过没有试 ...

  4. AJAX避免服务器调用上个页面缓存的办法

    GET 请求 一个简单的 GET 请求: xmlhttp.open("GET","demo_get.asp",true); xmlhttp.send(); 亲自 ...

  5. codeforces 742D Arpa's weak amphitheater and Mehrdad's valuable Hoses ——(01背包变形)

    题意:给你若干个集合,每个集合内的物品要么选任意一个,要么所有都选,求最后在背包能容纳的范围下最大的价值. 分析:对于每个并查集,从上到下滚动维护即可,其实就是一个01背包= =. 代码如下: #in ...

  6. oracle job的写法

    DECLAREX NUMBER;begin sys.dbms_job.submit(job => x, what => 'begindd_income_risk_control;end;' ...

  7. Web开发必知的八种隔离级别

    ACID性质是数据库理论中的奠基石,它定义了一个理论上可靠数据库所必须具备的四个性质:原子性,一致性,隔离性和持久性.虽然这四个性质都很重要,但是隔离性最为灵活.大部分数据库都提供了一些可供选择的隔离 ...

  8. Oracle nvchar2和varchar2区别分析

    Oracle nvchar2和varchar2区别分析: [注意]VARCHAR2是Oracle提供的特定数据类型,Oracle可以保证VARCHAR2在任何版本中该数据类型都可以向上和向下兼容.VA ...

  9. Android中的事件传递机制

    Android源码版本:API Level 19(Android 4.4) Android事件构成 在Android中,事件主要包括点按.长按.拖拽.滑动等,点按又包括单击和双击,另外还包括单指操作和 ...

  10. thinkphp 动态验证码

    <?php namespace Home\Controller; use Think\Controller; class TestController extends Controller { ...