题意:

有\(n\)个石头,每个石头有权值,可以给它们染'R', 'G', 'B'三种颜色,如下定义一种染色方案为合法方案:

  • 所有石头都染上了一种颜色
  • 令\(R, G, B\)为染了'R', 染了'G', 染了'B'的所有石头的权值和,存在一个三角形的三边为\(R, G, B\)

求合法方案数模\(998244353\)

思路:

考虑总方案数为\(3^n\),我们考虑怎么求出不合法的方案数。令\(dp[i][j]\)表示到第\(i\)个石头,两条短边和为\(j\)的方案数

但是我们注意到,如果\(sum\)是偶数的话,那么:

  1. \(R = B = \frac{sum}{2}\)和\(B = R = \frac{sum}{2}\)
  2. \(R = G = \frac{sum}{2}\)和\(G = R = \frac{sum}{2}\)
  3. \(B = G = \frac{sum}{2}\)和\(G = B = \frac{sum}{2}\)

贡献会重复算一遍,再\(dp\)一次,删掉一份贡献即可。

代码:

#include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 310
const ll p = 998244353;
int n, a[N];
ll f[N * N], g[N * N], all; int main() {
while (scanf("%d", &n) != EOF) {
ll sum = 0, mid;
all = 1;
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
sum += a[i];
all = (all * 3) % p;
}
mid = sum / 2;
memset(f, 0, sizeof f);
f[0] = 1;
for (int i = 1; i <= n; ++i) {
for (int j = sum - a[i]; j >= 0; --j) {
f[j + a[i]] = (f[j + a[i]] + f[j] * 2 % p) % p;
}
} ll res = 0;
for (int i = 0; i <= mid; ++i) {
res = (res + f[i]) % p;
}
if (sum % 2 == 0) {
memset(g, 0, sizeof g);
g[0] = 1;
for (int i = 1; i <= n; ++i) {
for (int j = sum - a[i]; j >= 0; --j) {
g[j + a[i]] = (g[j + a[i]] + g[j]) % p;
}
}
res = (res - g[mid] + p) % p;
}
printf("%lld\n", (all - (res * 3) % p + p) % p);
}
return 0;
}

Atcoder Tenka1 Programmer Contest 2019 D Three Colors的更多相关文章

  1. Atcoder Tenka1 Programmer Contest 2019 题解

    link 题面真简洁 qaq C Stones 最终一定是连续一段 . 加上连续一段 # .直接枚举断点记录前缀和统计即可. #include<bits/stdc++.h> #define ...

  2. Atcoder Tenka1 Programmer Contest 2019题解

    传送门 \(C\ Stones\) 最后肯定形如左边一段白+右边一段黑,枚举一下中间的断点,预处理一下前缀和就可以了 int main(){ // freopen("testdata.in& ...

  3. Tenka1 Programmer Contest 2019 D - Three Colors

    Three Colors 思路:dp 设sum为所有边的总和 不能组成三角形的情况:某条边长度>=ceil(sum/2),可以用dp求出这种情况的方案数,然后用总方案数减去就可以求出答案. 注意 ...

  4. Atcoder Tenka1 Programmer Contest 2019

    C 签到题,f[i][0/1]表示以i结尾最后一个为白/黑的最小值,转移显然. #include<bits/stdc++.h> using namespace std; ; ]; char ...

  5. Atcoder Tenka1 Programmer Contest 2019 E - Polynomial Divisors

    题意: 给出一个多项式,问有多少个质数\(p\)使得\(p\;|\;f(x)\),不管\(x\)取何值 思路: 首先所有系数的\(gcd\)的质因子都是可以的. 再考虑一个结论,如果在\(\bmod ...

  6. 【AtCoder】Tenka1 Programmer Contest 2019

    Tenka1 Programmer Contest 2019 C - Stones 题面大意:有一个01序列,改变一个位置上的值花费1,问变成没有0在1右边的序列花费最少多少 直接枚举前i个都变成0即 ...

  7. Atcoder Tenka1 Programmer Contest D: IntegerotS 【思维题,位运算】

    http://tenka1-2017.contest.atcoder.jp/tasks/tenka1_2017_d 给定N,K和A1...AN,B1...BN,选取若干个Ai使它们的或运算值小于等于K ...

  8. Atcoder Tenka1 Programmer Contest C C - 4/N

    http://tenka1-2017.contest.atcoder.jp/tasks/tenka1_2017_c 我怀疑我是不是智障.... 本来一直的想法是能不能构造出答案,把N按奇偶分,偶数好办 ...

  9. Tenka1 Programmer Contest 2019

    C:即要使前一部分为白色后一部分为黑色,枚举分割点前缀和计算答案取min即可. #include<bits/stdc++.h> using namespace std; #define l ...

随机推荐

  1. docker参数--restart=always的作用

    创建容器时没有添加参数  --restart=always ,导致的后果是:当 Docker 重启时,容器未能自动启动. 现在要添加该参数怎么办呢,方法有二: 1.Docker 命令修改 docker ...

  2. 解决jenkins下使用HTML Publisher插件后查看html报告显示不正常

    在jenkins后使用html publisher查看html报告时,发现显示不全,很多东西显示不了. 在查看官方文档后,这原来是安全问题所导致的. Jenkins安全默认是将以下功能都关闭了 1.j ...

  3. C++ Error: error LNK2019: unresolved external symbol

    在某工程中新添加了文件x.cu与x.hpp,实现了一些功能,最后编译整个工程的时候就出现了这个问题: error LNK2019: unresolved external symbol 这是链接错误, ...

  4. 浅谈 Java 字符串(String, StringBuffer, StringBuilder)

    我们先要记住三者的特征: String 字符串常量 StringBuffer 字符串变量(线程安全) StringBuilder 字符串变量(非线程安全) 一.定义 查看 API 会发现,String ...

  5. vue--简单数据绑定

    <template> <div id="app"> {{msg}} //绑定数据 {{obj.name}} //绑定对象 <p v-for=" ...

  6. 8.26 js

    2018-8-26 20:35:53 这两天周末,一直在看苏东坡传! 明天正常学python 用心学!

  7. ibatitsnet 因为会Dao.config 配置数据版本太低导致的问题

    ProjectReview.Test.SqlMapTest.TestSqlMap:IBatisNet.Common.Exceptions.ConfigurationException : - The ...

  8. windows10下笔记本电脑外接显示器设置

    笔记本屏幕小,故外接一个显示器,方便使用. 我的电脑没有VGA接口,有HDMI接口,所以我买了一个HDMI到VGA接口转换器. 直接把外界显示器安装到笔记电脑上,如下图所示 接下来是屏幕设置 打开系统 ...

  9. Python模块NumPy中的tile(A,rep) 函数

    from NumPy import * 函数形式: tile(A,rep) 功能:重复A的各个维度 参数类型: - A: Array类的都可以 - rep:A沿着各个维度重复的次数 这个英文单词的本意 ...

  10. POJ 3280 - Cheapest Palindrome - [区间DP]

    题目链接:http://poj.org/problem?id=3280 Time Limit: 2000MS Memory Limit: 65536K Description Keeping trac ...