题意:

有\(n\)个石头,每个石头有权值,可以给它们染'R', 'G', 'B'三种颜色,如下定义一种染色方案为合法方案:

  • 所有石头都染上了一种颜色
  • 令\(R, G, B\)为染了'R', 染了'G', 染了'B'的所有石头的权值和,存在一个三角形的三边为\(R, G, B\)

求合法方案数模\(998244353\)

思路:

考虑总方案数为\(3^n\),我们考虑怎么求出不合法的方案数。令\(dp[i][j]\)表示到第\(i\)个石头,两条短边和为\(j\)的方案数

但是我们注意到,如果\(sum\)是偶数的话,那么:

  1. \(R = B = \frac{sum}{2}\)和\(B = R = \frac{sum}{2}\)
  2. \(R = G = \frac{sum}{2}\)和\(G = R = \frac{sum}{2}\)
  3. \(B = G = \frac{sum}{2}\)和\(G = B = \frac{sum}{2}\)

贡献会重复算一遍,再\(dp\)一次,删掉一份贡献即可。

代码:

#include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 310
const ll p = 998244353;
int n, a[N];
ll f[N * N], g[N * N], all; int main() {
while (scanf("%d", &n) != EOF) {
ll sum = 0, mid;
all = 1;
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
sum += a[i];
all = (all * 3) % p;
}
mid = sum / 2;
memset(f, 0, sizeof f);
f[0] = 1;
for (int i = 1; i <= n; ++i) {
for (int j = sum - a[i]; j >= 0; --j) {
f[j + a[i]] = (f[j + a[i]] + f[j] * 2 % p) % p;
}
} ll res = 0;
for (int i = 0; i <= mid; ++i) {
res = (res + f[i]) % p;
}
if (sum % 2 == 0) {
memset(g, 0, sizeof g);
g[0] = 1;
for (int i = 1; i <= n; ++i) {
for (int j = sum - a[i]; j >= 0; --j) {
g[j + a[i]] = (g[j + a[i]] + g[j]) % p;
}
}
res = (res - g[mid] + p) % p;
}
printf("%lld\n", (all - (res * 3) % p + p) % p);
}
return 0;
}

Atcoder Tenka1 Programmer Contest 2019 D Three Colors的更多相关文章

  1. Atcoder Tenka1 Programmer Contest 2019 题解

    link 题面真简洁 qaq C Stones 最终一定是连续一段 . 加上连续一段 # .直接枚举断点记录前缀和统计即可. #include<bits/stdc++.h> #define ...

  2. Atcoder Tenka1 Programmer Contest 2019题解

    传送门 \(C\ Stones\) 最后肯定形如左边一段白+右边一段黑,枚举一下中间的断点,预处理一下前缀和就可以了 int main(){ // freopen("testdata.in& ...

  3. Tenka1 Programmer Contest 2019 D - Three Colors

    Three Colors 思路:dp 设sum为所有边的总和 不能组成三角形的情况:某条边长度>=ceil(sum/2),可以用dp求出这种情况的方案数,然后用总方案数减去就可以求出答案. 注意 ...

  4. Atcoder Tenka1 Programmer Contest 2019

    C 签到题,f[i][0/1]表示以i结尾最后一个为白/黑的最小值,转移显然. #include<bits/stdc++.h> using namespace std; ; ]; char ...

  5. Atcoder Tenka1 Programmer Contest 2019 E - Polynomial Divisors

    题意: 给出一个多项式,问有多少个质数\(p\)使得\(p\;|\;f(x)\),不管\(x\)取何值 思路: 首先所有系数的\(gcd\)的质因子都是可以的. 再考虑一个结论,如果在\(\bmod ...

  6. 【AtCoder】Tenka1 Programmer Contest 2019

    Tenka1 Programmer Contest 2019 C - Stones 题面大意:有一个01序列,改变一个位置上的值花费1,问变成没有0在1右边的序列花费最少多少 直接枚举前i个都变成0即 ...

  7. Atcoder Tenka1 Programmer Contest D: IntegerotS 【思维题,位运算】

    http://tenka1-2017.contest.atcoder.jp/tasks/tenka1_2017_d 给定N,K和A1...AN,B1...BN,选取若干个Ai使它们的或运算值小于等于K ...

  8. Atcoder Tenka1 Programmer Contest C C - 4/N

    http://tenka1-2017.contest.atcoder.jp/tasks/tenka1_2017_c 我怀疑我是不是智障.... 本来一直的想法是能不能构造出答案,把N按奇偶分,偶数好办 ...

  9. Tenka1 Programmer Contest 2019

    C:即要使前一部分为白色后一部分为黑色,枚举分割点前缀和计算答案取min即可. #include<bits/stdc++.h> using namespace std; #define l ...

随机推荐

  1. C语言位操作--判断整数是否为2的幂

    unsigned int v; // 判断v是否为2的幂 bool f; // f为判断的结果 f = (v & (v - 1)) == 0; // 结果为0表示不是2 的幂 // 改变表示方 ...

  2. 关于hp proliant sl210t服务器raid 1阵列配置

    hp proliant sl210t服务器,一般都会带有两个阵列卡 一个服务器自带的Dynamic Smart Array B120i RAID控制器,一个为Slot卡槽上的Smart Array P ...

  3. 【CF802L】Send the Fool Further! (hard) 高斯消元

    [CF802L]Send the Fool Further! (hard) 题意:给你一棵n个节点的树,每条边有长度,从1号点开始,每次随机选择一个相邻的点走,走到一个叶子时就停止,问期望走的总路程. ...

  4. [通信] C#多线程Socket-文件传输

    FileSendClient : Form1.cs using System; using System.IO; using System.Net; using System.Net.Sockets; ...

  5. 不同修饰符使用细节(java)

    常用来修饰类.方法.变量的修饰符如下 public 权限修饰符,公共访问, 类,方法,成员变量 protected 权限修饰符,受保护访问, 方法,成员变量 默认什么也不写 也是一种权限修饰符,默认访 ...

  6. Nginx防止恶意域名解析

    为了防止别人恶意将大量域名解析到自己的网站上面.我们可以对nginx做防止恶意域名解析,这样就只能通过自己的域名访问网站,其他域名就会显示错误500 打开Nginx配置文件nginx.conf,在原来 ...

  7. VS2015 中使用 MVC4

    最近把机子升级到win10 觉得还是好用, 又看了一个vs最新版,于时就安了个vs2015 可以前MVC4的项目用不起了 System.Web.Mvc这个有叹号,生成还要报错, 看了一下原因找不到4. ...

  8. Solr学习笔记之6、Solr学习资源

    一.官方资源 1.官网:http://lucene.apache.org/solr/ 2.wiki:http://wiki.apache.org/solr/FrontPage 3.solr中文网:ht ...

  9. hadoop HA架构安装部署(QJM HA)

    ###################HDFS High Availability Using the Quorum Journal Manager########################## ...

  10. 教程 | 如何使用纯NumPy代码从头实现简单的卷积神经网络

    Building Convolutional Neural Network using NumPy from Scratch https://www.linkedin.com/pulse/buildi ...