Java下使用opencv进行人脸检测

工作需要,研究下人脸识别,发现opencv比较常用,尽管能检测人脸,但识别率不高,多数是用来获取摄像头的视频流的,提取里面的视频帧,实现人脸识别时通常会和其他框架搭配使用,比如face_recognition、SeetaFace Engine、Facenet。不过这里先简单介绍下opencv在java下的使用(网上大多都是C++的demo,这里是使用其java接口,还提供了python的接口)。

这里简单说下opencv(版本为340)的安装

window下直接运行opencv-3.4.0-vc14_vc15.exe即可,java下用到的只有里面的opencv-340.jar和opencv_java340.dll,官网下载或者直接下载java部分。
   1、 将build\java\opencv-340.jar导入到项目中,
   2、 根据操作系统版本,将build\java\x64\opencv_java340.dll放在%JAVA_HONE%\bin下(这里只要放在System.getProperty("java.library.path")下目录即可)。
   3、 在代码中使用System.loadLibrary(Core.NATIVE_LIBRARY_NAME);加载。

在sources\data下都是模型文件,opencv使用这些xml建模(CascadeClassifier)分析人脸,这里只用到haar下的正脸和人眼模型文件。

下面的demo修改自网上的例子,原为单独检测人脸,发现会将只有鼻子的部分也识别为人脸,所以修改为使用两个CascadeClassifier同时检测人脸和人眼,同时存在才确认为人脸目标,提高准确率,不过识别的时间较原来的长。
Demo

package opencv;

import org.opencv.core.*;
import org.opencv.core.Point;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
import org.opencv.videoio.VideoCapture;
import org.opencv.videoio.Videoio;

import javax.swing.*;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.util.Random;

public class MyDemo extends JPanel {
    private BufferedImage mImg;

/**
     * 转换图像
     * @param mat
     * @return
     */
    private BufferedImage mat2BI(Mat mat){
        int dataSize = mat.cols()*mat.rows()*(int)mat.elemSize();
        byte[] data = new byte[dataSize];
        mat.get(0, 0,data);

int type = mat.channels()==1? BufferedImage.TYPE_BYTE_GRAY:BufferedImage.TYPE_3BYTE_BGR;
        if(type == BufferedImage.TYPE_3BYTE_BGR){
            for(int i=0;i<dataSize;i+=3){
                byte blue=data[i+0];
                data[i+0]=data[i+2];
                data[i+2]=blue;
            }
        }
        BufferedImage image=new BufferedImage(mat.cols(),mat.rows(),type);
        image.getRaster().setDataElements(0, 0, mat.cols(), mat.rows(), data);

return image;
    }

@Override
    public void paint(Graphics g){
        if(mImg!=null){
            g.drawImage(mImg, 0, 0, mImg.getWidth(),mImg.getHeight(),this);
        }
    }

/**
     * opencv实现人脸识别,同时检测到人脸和人眼时才截图
     * @param img
     */
    public static Mat detectFace(Mat img) {

System.out.println("Running DetectFace ... ");
        // 从配置文件lbpcascade_frontalface.xml中创建一个人脸识别器,该文件位于opencv安装目录中
        CascadeClassifier faceDetector = new CascadeClassifier("C:\\env\\opencv\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml");
        CascadeClassifier eyeDetector = new CascadeClassifier("C:\\env\\opencv\\opencv\\sources\\data\\haarcascades\\haarcascade_eye.xml");

// 在图片中检测人脸
        MatOfRect faceDetections = new MatOfRect();
        faceDetector.detectMultiScale(img, faceDetections);

//System.out.println(String.format("Detected %s faces", faceDetections.toArray().length));

Rect[] rects = faceDetections.toArray();
        Random r = new Random();
        if(rects != null && rects.length >= 1){
            for (Rect rect : rects) {

//画矩形
                Imgproc.rectangle(img, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height),
                        new Scalar(0, 0, 255), 2);
//                Imgproc.circle(img, new Point(rect.x + rect.width, rect.y + rect.height), cvRound((rect.width + rect.height) * 0.25),
//                        new Scalar(0, 0, 255), 2);

//识别人眼
                Mat faceROI = new Mat(img, rect );
                MatOfRect eyesDetections = new MatOfRect();
                eyeDetector.detectMultiScale( faceROI, eyesDetections);
                System.out.println("Running DetectEye ... "+ eyesDetections);

if( eyesDetections.toArray().length > 1){
                    save(img, rect, "C:\\Users\\TR\\Desktop\\demo\\test\\"+r.nextInt(2000)+".jpg");
                }

}
        }
        return img;
    }

/**
     * opencv将人脸进行截图并保存
     * @param img
     */
    private static void save(Mat img, Rect rect, String outFile){
        Mat sub = img.submat(rect);
        Mat mat = new Mat();
        Size size = new Size(300, 300);
        Imgproc.resize(sub, mat, size);
        Imgcodecs.imwrite(outFile, mat);
    }

public static void main(String[] args) {
        try{
            //加载opencv库
            System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

//获取摄像头视频流
            VideoCapture capture = new VideoCapture(0);
            int height = (int)capture.get(Videoio.CAP_PROP_FRAME_HEIGHT);
            int width = (int)capture.get(Videoio.CAP_PROP_FRAME_WIDTH);
            if(height == 0||width == 0){
                throw new Exception("camera not found!");
            }

//使用Swing生成GUI
            JFrame frame = new JFrame("camera");
            frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
            MyDemo panel = new MyDemo();
            frame.setContentPane(panel);
            frame.setVisible(true);
            frame.setSize(width+frame.getInsets().left+frame.getInsets().right,
                    height+frame.getInsets().top+frame.getInsets().bottom);

Mat capImg = new Mat();
            Mat temp=new Mat();
            //Random r = new Random();
            while(frame.isShowing()){
                //获取视频帧
                capture.read(capImg);
                //转换为灰度图
                Imgproc.cvtColor(capImg, temp, Imgproc.COLOR_RGB2GRAY);
                //识别人脸
                Mat image = detectFace(capImg);
                //转为图像显示
                panel.mImg = panel.mat2BI(image);
                panel.repaint();
            }
            capture.release();
            frame.dispose();

}catch(Exception e){
            StringWriter sw = new StringWriter();
            PrintWriter pw = new PrintWriter(sw);
            e.printStackTrace(pw);
            System.out.println(sw.toString());
        }
        finally{
            System.out.println("Exit");
        }

}

}
---------------------
作者:Cceking
来源:CSDN
原文:https://blog.csdn.net/cceking/article/details/80868314
版权声明:本文为博主原创文章,转载请附上博文链接!

javacv 340使用 人脸检测例子【转载】的更多相关文章

  1. 2、转载一篇,浅析人脸检测之Haar分类器方法

    转载地址http://www.cnblogs.com/ello/archive/2012/04/28/2475419.html 浅析人脸检测之Haar分类器方法  [补充] 这是我时隔差不多两年后, ...

  2. caffe_实战之两个简单的例子(物体分类和人脸检测)

    一.物体分类: 这里使用的是caffe官网中自带的例子,我这里主要是对代码的解释~ 首先导入一些必要的库: import caffe import numpy as np import matplot ...

  3. 【转载】opencv实现人脸检测

    全文转载自CSDN的博客(不知道怎么将CSDN的博客转到博客园,应该没这功能吧,所以直接复制全文了),转载地址如下 http://blog.csdn.net/lsq2902101015/article ...

  4. 使用python实现人脸检测<转载>

    原文地址:https://www.cnblogs.com/vipstone/p/8884991.html =============================================== ...

  5. 基于Haar特征Adaboost人脸检测级联分类

    基于Haar特征Adaboost人脸检测级联分类 基于Haar特征Adaboost人脸检测级联分类,称haar分类器. 通过这个算法的名字,我们能够看到这个算法事实上包括了几个关键点:Haar特征.A ...

  6. Python 3 利用 Dlib 实现摄像头实时人脸检测和平铺显示

    1. 引言 在某些场景下,我们不仅需要进行实时人脸检测追踪,还要进行再加工:这里进行摄像头实时人脸检测,并对于实时检测的人脸进行初步提取: 单个/多个人脸检测,并依次在摄像头窗口,实时平铺显示检测到的 ...

  7. Python 3 利用 Dlib 19.7 进行人脸检测

    0. 引言 / Overview 介绍 Dlib 中基于 HOG,Histogram of Oriented Gradients / 方向梯度直方图 实现 Face Detect / 人脸检测 的两个 ...

  8. 利用html5、websocket和opencv实现人脸检测

    最近学习人脸识别相关的东西,在MFC下使用OpenCV做了一个简单的应用.训练需要较多的数据,windows应用程序终究还是不方便,于是想着做成CS模式:检测识别都放在服务器端,视频获取和显示都放在网 ...

  9. 基于Emgu CV的人脸检测代码

    这个提供的代码例子是Emgu CV提供的源码里面自带的例子,很好用,基本不需要改,代码做的是人脸检测不是人脸识别,这个要分清楚.再就是新版本的Emgu CV可能会遇到系统32位和64位处理方式有区别的 ...

随机推荐

  1. angularjs 中的scope继承关系——(1)

    转自:http://www.lovelucy.info/understanding-scopes-in-angularjs.html JavaScript 的原型链继承 假设父类 parentScop ...

  2. Python的数据类型2列表

    Python的数值类型List,也就是列表 Python的列表比较类似与其他语言的数组概念,但他又与其他语言数组的概念有很大的不同 C语言.Java的数组定义是这样的,存储多个同类型的数值的集合就叫数 ...

  3. response.setHeader的各种用法 ------ 笔记(一)

    转载地址:https://blog.csdn.net/junmoxi/article/details/76976692 1.一秒刷新页面一次 response.setHeader("refr ...

  4. Word发布到cnblogs文章

        1◆ 打开word 2◆ 注册用户   3◆ 操作 success

  5. [转载]彻底卸载oracleXE数据库服务器

    URL:http://www.2cto.com/database/201306/216182.html

  6. Android Studio打开React Native创建的项目

    1.点击 Import project 2.找到项目下android文件夹,选择build.gradle文件,open

  7. avalon源码阅读(1)

    来源 写angularJS源码阅读系列的时候,写的太垃圾了. 一个月后看,真心不忍直视,以后有机会的话得重写. 这次写avalonJS,希望能在代码架构层面多些一点,少上源码.多写思路. avalon ...

  8. Ascii vs. Binary Files

    Ascii vs. Binary Files Introduction Most people classify files in two categories: binary files and A ...

  9. echarts折线图个性化填充、线条、拐点样式

    由于每组数据的拐点样式.线条颜色都不一样,所以series里的每组数据都需要单独设置样式. 首先先来看一下完成后的效果吧 具体设置如下 series: [ { name:systemName[0], ...

  10. SWIFT用ScrollView加图片制作Banner

    网上参考OBJC写的用ScrollView图片轮播效果,照着画了个,先上效果图: 附上代码: @IBOutlet weak var pc: UIPageControl! @IBOutlet weak ...