poj 2096

题目:http://poj.org/problem?id=2096

f[ i ][ j ] 表示收集了 i 个 n 的那个、 j 个 s 的那个的期望步数。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define db double
using namespace std;
const int N=;
db n,s,f[N][N];
int main()
{
scanf("%lf%lf",&n,&s);db ml=n*s;
for(int i=n;i>=;i--)
for(int j=s;j>=;j--)
{
if(i==n&&j==s)continue;
if(i<n)f[i][j]+=(n-i)*j/ml*f[i+][j];
if(j<s)f[i][j]+=i*(s-j)/ml*f[i][j+];
if(i<n&&j<s)f[i][j]+=(n-i)*(s-j)/ml*f[i+][j+];
f[i][j]+=;
f[i][j]*=ml/(ml-i*j);
}
printf("%.4f\n",f[][]);
return ;
}

ZOJ 3329

题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3754

高斯消元好像时间复杂度太高。

注意到每个位置都可以从 dp[ 0 ] 转移过来,所以可以想到每个 dp[ i ] 都可以表示成 a[ i ]*dp[ 0 ] + b[ i ] 的形式;这样如果算出了 a[ 0 ] 和 b[ 0 ] ,就能直接算出 dp[ 0 ] 了。

\( dp[i]=a[i]*dp[0]+b[i] \)

\( dp[i]=\sum\limits_{j=1}^{k}dp[i+j]*p[j] + dp[0]*p[0] + 1 \)

\( dp[i]=\sum\limits_{j=1}^{k}(a[i+j]*p[j]*dp[0]+b[i+j]*p[j]) + dp[0]*p[0] + 1 \)

\( dp[i]=((\sum\limits_{j=1}^{k}a[i+j]*p[j])+p[0])dp[0]+(\sum\limits_{j=1}^{k}b[i][j]*p[j])+1 \)

所以 \( a[i]=(\sum\limits_{j=1}^{k}a[i+j]*p[j])+p[0] \) , \( b[i]=(\sum\limits_{j=1}^{k}b[i][j]*p[j])+1 \)

注意多组数据的清零。空间不是 505 而是 525 。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define db double
using namespace std;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return fx?ret:-ret;
}
const int N=,M=;
int n,c[],t[]; db p[M],a[N],b[N];
int main()
{
int T=rdn();
while(T--)
{
n=rdn();for(int i=;i<=;i++)c[i]=rdn();
for(int i=;i<=;i++)t[i]=rdn();
db tp=1.0/(c[]*c[]*c[]); p[]=tp;
int lm=c[]+c[]+c[];
for(int i=;i<=lm;i++)p[i]=;//
for(int i=;i<=c[];i++)
for(int j=;j<=c[];j++)
for(int k=;k<=c[];k++)
{
if(i==t[]&&j==t[]&&k==t[])continue;
p[i+j+k]+=tp;
}
for(int i=;i<=n;i++)a[i]=p[],b[i]=;
for(int i=n+,j=n+lm;i<=j;i++)a[i]=b[i]=;////
for(int i=n;i>=;i--)
for(int j=;j<=lm;j++)
a[i]+=a[i+j]*p[j],b[i]+=b[i+j]*p[j];
printf("%.10f\n",b[]/(-a[]));
}
return ;
}

hdu 4035

题目:http://acm.hdu.edu.cn/showproblem.php?pid=4035

设 f[ i ] 表示现在在 i 号点,期望走几步离开迷宫。

数据范围无法高斯消元。

考虑把 f[ i ] 表示成 a[ i ] * f[ 1 ] + b[ i ] 的形式,这样才能在知道系数之后算出 f[ 1 ] 。它是从 1 号点开始走的,所以应该能表示成这样。

只是这样的话,转移还是没有顺序的。所以考虑把 f[ i ] 表示成 a[ i ] * f[ 1 ] + b[ i ] * f[ fa ] + c[ i ] 的形式。

\( f[i] = k[i]*f[1]+e[i]*0 + \frac{1-k[i]-e[i]}{d[i]}(f[fa]+1) + \frac{1-k[i]-e[i]}{d[i]}\sum\limits_{j \in child}(f[j]+1) \)

\( f[i] = a[i]*f[1]+b[i]*f[fa]+c[i] \)   令 \( s[i]=\frac{1-k[i]-e[i]}{d[i]} \)

\( f[i]=k[i]*f[1]+s[i]*f[fa]+s[i]+(d[i]-1])s[i]+s[i]\sum\limits_{j \in child}(a[j]*f[1]+b[j]*f[i]+c[j]) \)

\( f[i]=k[i]*f[1]+s[i]*f[fa]+d[i]*s[i]+s[i]\sum\limits_{j \in child}a[j]*f[1]+s[i]\sum\limits_{j \in child}b[j]*f[i]+s[i]\sum\limits_{j \in child}c[j] \)

\( (1-s[i]\sum\limits_{j \in child}f[i]=(k[i]+s[i]\sum\limits_{j \in child}a[j])f[1]+s[i]*f[fa]+d[i]*s[i]+s[i]\sum\limits_{j \in child}c[j] \)

答案就是 \( \frac{c[1]}{1-a[1]} \) 。当 \( 1 = a[1] \) 时无解。

精度开成 1e-8 会 WA , 1e-9 就可以了。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define db double
using namespace std;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return fx?ret:-ret;
}
const int N=1e4+;const db eps=1e-;
int n,hd[N],xnt,to[N<<],nxt[N<<],d[N];db k[N],e[N],s[N],a[N],b[N],c[N];
void add(int x,int y){to[++xnt]=y;nxt[xnt]=hd[x];hd[x]=xnt;d[x]++;}
void dfs(int cr,int fa)
{
db tp=;
for(int i=hd[cr],v;i;i=nxt[i])
if((v=to[i])!=fa)
{
dfs(v,cr);a[cr]+=a[v];c[cr]+=c[v];tp+=b[v];
}
a[cr]=a[cr]*s[cr]+k[cr]; b[cr]=s[cr]; c[cr]=c[cr]*s[cr]+d[cr]*s[cr];
tp=-tp*s[cr];
a[cr]/=tp; b[cr]/=tp; c[cr]/=tp;
}
int main()
{
int T=rdn();
for(int t=;t<=T;t++)
{
n=rdn();memset(hd,,sizeof hd);xnt=;
for(int i=;i<=n;i++)d[i]=;
for(int i=,u,v;i<n;i++)
u=rdn(),v=rdn(),add(u,v),add(v,u);
for(int i=;i<=n;i++)
{
k[i]=(db)rdn()/;e[i]=(db)rdn()/;
s[i]=(-k[i]-e[i])/d[i];
a[i]=b[i]=c[i]=;
}
dfs(,); printf("Case %d: ",t);
if(fabs(-a[])<=eps)puts("impossible");
else printf("%.10f\n",c[]/(-a[]));
}
return ;
}

poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP的更多相关文章

  1. POJ 2096 Collecting Bugs 期望dp

    题目链接: http://poj.org/problem?id=2096 Collecting Bugs Time Limit: 10000MSMemory Limit: 64000K 问题描述 Iv ...

  2. POJ 2096 Collecting Bugs (概率DP,求期望)

    Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...

  3. POJ 2096 Collecting Bugs

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 1716   Accepted: 783 C ...

  4. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

  5. poj 2096 Collecting Bugs 概率dp 入门经典 难度:1

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 2745   Accepted: 1345 ...

  6. Poj 2096 Collecting Bugs (概率DP求期望)

    C - Collecting Bugs Time Limit:10000MS     Memory Limit:64000KB     64bit IO Format:%I64d & %I64 ...

  7. poj 2096 Collecting Bugs 【概率DP】【逆向递推求期望】

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 3523   Accepted: 1740 ...

  8. POJ 2096 Collecting Bugs:期望dp

    题目链接:http://poj.org/problem?id=2096 题意: 有一个程序猿,他每天都会发现一个bug. bug共有n个种类.属于某一个种类的概率为1/n. 有s个子系统,每个bug属 ...

  9. poj 2096 Collecting Bugs - 概率与期望 - 动态规划

    Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...

随机推荐

  1. img标签中alt属性与title属性在seo的作用-摘自网友

    img标签中alt属性与title属性作用,也许大家比较迷惑,现在给大家举例说明.alt属性是图片的替换文字.title属性规定元素的额外信息,有视觉效果. 目录 alt属性 title属性 ie和f ...

  2. OC ARC之循环引用问题(代码分析)

    // // main.m // 03-arc-循环引用 // // Created by apple on 13-8-11. // Copyright (c) 2013年 itcast. All ri ...

  3. poj3461

    题解: 简单kmp 然而strlen时间号费啊 代码: #include<cstdio> #include<cstring> using namespace std; ; #d ...

  4. selenium(四)操作cookie,伪造cookie

    简介: Cookie,有时也用其复数形式 Cookies,指某些网站为了辨别用户身份.进行 session 跟踪而储存在用户本地终端上的数据. 常见的用途就是保留用户登陆信息,登陆时的7天免登陆,记住 ...

  5. mybatis 传递多个值的解决办法

    参考链接:http://www.2cto.com/database/201409/338155.html. 其中三种方案是正确的,有些例子的细节是错的,但是无关紧要

  6. 面试题21:包含min函数的栈

    题目:定义栈的数据结构,要求添加一个min函数,能够得到栈的最小元素.要求函数min.push以及pop的时间复杂度都是O(1). 分析:google的一道面试题.我看到这道题目时,第一反应就是每次p ...

  7. MyEclipse WebSphere开发教程:WebSphere 7安装指南(三)

    [周年庆]MyEclipse个人授权 折扣低至冰点!立即开抢>> [MyEclipse最新版下载] 五.应用WebSphere 7.0.0.x和Java SDK更新 1. 要应用这些PAK ...

  8. “开始菜单”按钮今年8月将重回Windows 8

    本月早些时候微软明确表示,“开始菜单”将重新回归Windows 8操作系统.尽管微软当时并没有公布具体的时间表,但据熟悉微软内部运作的消息灵通人士透露称,“开始菜单”极有可能将出现在预计于今年8月发布 ...

  9. 网络编程(socket,套接字)

    服务端地址不变 ip + mac 标识唯一一台机器 ip +端口 标识唯一客户端应用程序 套接字: 网络编程   网络编程 一.python提供了两个级别访问的网络服务 低级别的网络服务支持基本的 S ...

  10. 三步解决 vue 按需加载

    1  webpack 的 output 配置 chunkFleName 树干名称: " chunks/[name]-[chunkhash:8].js  " 这一步是配合第三步, 生 ...