1702: [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 510  Solved: 196
[Submit][Status][Discuss]

Description

Farmer John's N cows (1 <= N <= 100,000) share many similarities. In fact, FJ has been able to narrow down the list of features shared by his cows to a list of only K different features (1 <= K <= 30). For example, cows exhibiting feature #1 might have spots, cows exhibiting feature #2 might prefer C to Pascal, and so on. FJ has even devised a concise way to describe each cow in terms of its "feature ID", a single K-bit integer whose binary representation tells us the set of features exhibited by the cow. As an example, suppose a cow has feature ID = 13. Since 13 written in binary is 1101, this means our cow exhibits features 1, 3, and 4 (reading right to left), but not feature 2. More generally, we find a 1 in the 2^(i-1) place if a cow exhibits feature i. Always the sensitive fellow, FJ lined up cows 1..N in a long row and noticed that certain ranges of cows are somewhat "balanced" in terms of the features the exhibit. A contiguous range of cows i..j is balanced if each of the K possible features is exhibited by the same number of cows in the range. FJ is curious as to the size of the largest balanced range of cows. See if you can determine it.

N(1<=N<=100000)头牛,一共K(1<=K<=30)种特色,
每头牛有多种特色,用二进制01表示它的特色ID。比如特色ID为13(1101),
则它有第1、3、4种特色。[i,j]段被称为balanced当且仅当K种特色在[i,j]内
拥有次数相同。求最大的[i,j]段长度。

Input

* Line 1: Two space-separated integers, N and K.

* Lines 2..N+1: Line i+1 contains a single K-bit integer specifying the features present in cow i. The least-significant bit of this integer is 1 if the cow exhibits feature #1, and the most-significant bit is 1 if the cow exhibits feature #K.

Output

* Line 1: A single integer giving the size of the largest contiguous balanced group of cows.

Sample Input

7 3
7
6
7
2
1
4
2

INPUT DETAILS:

The line has 7 cows with 3 features; the table below summarizes the
correspondence:
Feature 3: 1 1 1 0 0 1 0
Feature 2: 1 1 1 1 0 0 1
Feature 1: 1 0 1 0 1 0 0
Key: 7 6 7 2 1 4 2
Cow #: 1 2 3 4 5 6 7

Sample Output

4

OUTPUT DETAILS:

In the range from cow #3 to cow #6 (of size 4), each feature appears
in exactly 2 cows in this range:
Feature 3: 1 0 0 1 -> two total
Feature 2: 1 1 0 0 -> two total
Feature 1: 1 0 1 0 -> two total
Key: 7 2 1 4
Cow #: 3 4 5 6

HINT

鸣谢fjxmyzwd

Source

Gold

题解:一开始狠狠的逗比了一下——一开始我看到了这题,想当然认为问题可以转化为求最长的和为\( {2}^{M} - 1 \)的倍数的子段,结果狠狠的WA了TT。。。这种想法有个最典型的反例,那就是连续\( {2}^{M} - 1 \)个1,但是很明显不符合题意

于是发现如果某段内各个位相等的话,那么对于各个位的前缀和之差必然完全相等,其实我们也不必直接去求前缀和之差,直接可以用平衡树进行形态存储——形态存储指的是将各个位上的累加数字关于第一个元素进行个相对化——比如(2,4,6)可以转化为(0,2,4),而(4,6,8)也可以转为(0,2,4)这样如果两个前缀和数组可以构成形态相等的话,那就意味着中间这一段符合题目中所述的各个位累加和相等,于是用一颗平衡树存储即可,时间复杂度\( O\left(N M \log N \right) \)

 /**************************************************************
Problem:
User: HansBug
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ type
list=array[..] of longint;
var
i,j,k,l,m,n,head:longint;
a:array[..] of list;
fix,lef,rig:array[..] of longint;
function putin(x:longint;var a:list):longint;
var i:longint;
begin
fillchar(a,sizeof(a),);
i:=;
while x> do
begin
inc(i);
a[i]:=x mod ;
x:=x div ;
end;
end;
function min(x,y:longint):longint;
begin
if x<y then min:=x else min:=y;
end;
function max(x,y:longint):longint;
begin
if x>y then max:=x else max:=y;
end;
function fc(a,b:list):longint;
var i,j,k:longint;
begin
fc:=;
for i:= to m do
begin
j:=(a[i]-a[])-(b[i]-b[]);
if j> then exit();
if j< then exit(-);
end;
end;
procedure lt(var x:longint);
var f,r:longint;
begin
if (x=) or (rig[x]=) then exit;
f:=x;r:=rig[x];
rig[f]:=lef[r];
lef[r]:=f;
x:=r;
end;
procedure rt(var x:longint);
var f,l:longint;
begin
if (x=) or (lef[x]=) then exit;
f:=x;l:=lef[x];
lef[f]:=rig[l];
rig[l]:=f;
x:=l;
end;
function ins(var x:longint;y:longint):longint;
begin
if x= then
begin
x:=y;
exit(y);
end;
j:=fc(a[x],a[y]);
case j of
:exit(x);
:begin
if lef[x]= then
begin
lef[x]:=y;
ins:=y;
end
else ins:=ins(lef[x],y);
if fix[lef[x]]<fix[x] then rt(x);
end;
-:begin
if rig[x]= then
begin
rig[x]:=y;
ins:=y;
end
else ins:=ins(rig[x],y);
if fix[rig[x]]<fix[x] then lt(x);
end;
end;
end;
begin
readln(n,m);randomize;
fillchar(lef,sizeof(lef),);
fillchar(rig,sizeof(rig),);
for i:= to n+ do
begin
if i= then putin(,a[i]) else
begin
readln(j);
putin(j,a[i]);
end;
for j:= to m do a[i][j]:=a[i-][j]+a[i][j];
fix[i]:=random(maxlongint);
end;
head:=;l:=;
for i:= to n+ do
begin
j:=ins(head,i);
l:=max(l,i-j);
end;
writeln(l);
readln;
end.

1702: [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列的更多相关文章

  1. bzoj 1702: [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列——map+hash+转换

    Description N(1<=N<=100000)头牛,一共K(1<=K<=30)种特色, 每头牛有多种特色,用二进制01表示它的特色ID.比如特色ID为13(1101), ...

  2. 【BZOJ】1702: [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列

    [题意]给定n头牛,k个特色,给出每头牛拥有哪些特色的二进制对应数字,[i,j]平衡当且仅当第i~j头牛的所有特色数量都相等,求最长区间长度. [算法]平衡树+数学转化 [题解]统计前缀和sum[i] ...

  3. bzoj 1702: [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列【hash】

    我%&&--&()&%????? 双模hashWA,unsigned long longAC,而且必须判断hash出来的数不能为0???? 我可能学了假的hash 这个 ...

  4. [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列

    Description N(1<=N<=100000)头牛,一共K(1<=K<=30)种特色,每头牛有多种特色,用二进制01表示它的特色ID.比如特色ID为13(1101),则 ...

  5. BZOJ1702: [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列

    n<=100000个数表示每头牛在K<=30种物品的选取情况,该数在二进制下某位为0表示不选1表示选,求一个最大的区间使区间内选择每种物品的牛一样多. 数学转化,把不同状态间单变量的关系通 ...

  6. 哈希-Gold Balanced Lineup 分类: POJ 哈希 2015-08-07 09:04 2人阅读 评论(0) 收藏

    Gold Balanced Lineup Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13215 Accepted: 3873 ...

  7. POJ 3274 Gold Balanced Lineup

    Gold Balanced Lineup Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10924 Accepted: 3244 ...

  8. POJ 3274:Gold Balanced Lineup 做了两个小时的哈希

    Gold Balanced Lineup Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13540   Accepted:  ...

  9. 洛谷 P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维)

    P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维) 前言 题目链接 本题作为一道Stl练习题来说,还是非常不错的,解决的思维比较巧妙 算是一道不错的题 ...

随机推荐

  1. #DP# ----- OpenJudge数字组合

    OpenJudge 2985:数字组合 总时间限制:1000ms  内存限制: 65536kB 描述 有n个正整数,找出其中和为t(t也是正整数)的可能的组合方式.如:n=5,5个数分别为1,2,3, ...

  2. 小试 Ninja

    Ninja 是最近冒出来的一个 build system,它很像 make,然而效率更高,对大项目支持更好.当然我用 Ninja 和效率无关(我又没有那种有几百个中间目标的 C++ 项目要 build ...

  3. 关于pandas精度控制

    最近使用pandas处理一批数据,数据中包含几个columns,它们的数据精度,例如 3.25165,1451684684168.0,0.23 处理完之后保存csv时发现,1451684684168. ...

  4. 《连载 | 物联网框架ServerSuperIO教程》- 15.数据持久化接口的使用。附:3.2发布与版本更新说明。

    1.C#跨平台物联网通讯框架ServerSuperIO(SSIO)介绍 <连载 | 物联网框架ServerSuperIO教程>1.4种通讯模式机制. <连载 | 物联网框架Serve ...

  5. C#npoi导出excel一些自己的看法

    之前转过一篇类似的文章,那个是用C#自带的excel类操作Excel的,还有一种在c#上操作excel的方法便是npoi了,npoi是poi的C#版本. npoi操作excel有两种形式,一种是hss ...

  6. js判断为空Null与字符串为空简写方法

    下面就是有关判断为空的简写方法.   代码如下: if (variable1 !== null || variable1 !== undefined || variable1 !== '') {  v ...

  7. jenkins全局安全设置

    如何进入安全设置界面          在Jenkins的主界面,点击 configure Global Security 选项,进入Jenkins的系统安全设置界面.安全界面如下图.在这里我们分别介 ...

  8. java 解析json

    例<解析评论> //post方式请求 String url=“http://product.dangdang.com/comment/comment.php?product_id=6056 ...

  9. 使用jmeter进行APP接口测试经验总结

    声明:我觉得文章不错想保存,如果带来不便请联系我. 使用工具: Fiddler.Jmeter 测试步骤: 1.    确认接口 从开发人员那里获取接口文档,接口文档应该包括完整的功能接口.接口请求方式 ...

  10. Python之文件与目录操作及压缩模块(os、shutil、zipfile、tarfile)

    Python中可以用于对文件和目录进行操作的内置模块包括: 模块/函数名称 功能描述 open()函数 文件读取或写入 os.path模块 文件路径操作 os模块 文件和目录简单操作 zipfile模 ...