1702: [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列
1702: [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 510 Solved: 196
[Submit][Status][Discuss]
Description
Farmer John's N cows (1 <= N <= 100,000) share many similarities. In fact, FJ has been able to narrow down the list of features shared by his cows to a list of only K different features (1 <= K <= 30). For example, cows exhibiting feature #1 might have spots, cows exhibiting feature #2 might prefer C to Pascal, and so on. FJ has even devised a concise way to describe each cow in terms of its "feature ID", a single K-bit integer whose binary representation tells us the set of features exhibited by the cow. As an example, suppose a cow has feature ID = 13. Since 13 written in binary is 1101, this means our cow exhibits features 1, 3, and 4 (reading right to left), but not feature 2. More generally, we find a 1 in the 2^(i-1) place if a cow exhibits feature i. Always the sensitive fellow, FJ lined up cows 1..N in a long row and noticed that certain ranges of cows are somewhat "balanced" in terms of the features the exhibit. A contiguous range of cows i..j is balanced if each of the K possible features is exhibited by the same number of cows in the range. FJ is curious as to the size of the largest balanced range of cows. See if you can determine it.
N(1<=N<=100000)头牛,一共K(1<=K<=30)种特色,
每头牛有多种特色,用二进制01表示它的特色ID。比如特色ID为13(1101),
则它有第1、3、4种特色。[i,j]段被称为balanced当且仅当K种特色在[i,j]内
拥有次数相同。求最大的[i,j]段长度。
Input
* Line 1: Two space-separated integers, N and K.
* Lines 2..N+1: Line i+1 contains a single K-bit integer specifying the features present in cow i. The least-significant bit of this integer is 1 if the cow exhibits feature #1, and the most-significant bit is 1 if the cow exhibits feature #K.
Output
* Line 1: A single integer giving the size of the largest contiguous balanced group of cows.
Sample Input
7
6
7
2
1
4
2
INPUT DETAILS:
The line has 7 cows with 3 features; the table below summarizes the
correspondence:
Feature 3: 1 1 1 0 0 1 0
Feature 2: 1 1 1 1 0 0 1
Feature 1: 1 0 1 0 1 0 0
Key: 7 6 7 2 1 4 2
Cow #: 1 2 3 4 5 6 7
Sample Output
OUTPUT DETAILS:
In the range from cow #3 to cow #6 (of size 4), each feature appears
in exactly 2 cows in this range:
Feature 3: 1 0 0 1 -> two total
Feature 2: 1 1 0 0 -> two total
Feature 1: 1 0 1 0 -> two total
Key: 7 2 1 4
Cow #: 3 4 5 6
HINT
鸣谢fjxmyzwd
Source
题解:一开始狠狠的逗比了一下——一开始我看到了这题,想当然认为问题可以转化为求最长的和为\( {2}^{M} - 1 \)的倍数的子段,结果狠狠的WA了TT。。。这种想法有个最典型的反例,那就是连续\( {2}^{M} - 1 \)个1,但是很明显不符合题意
于是发现如果某段内各个位相等的话,那么对于各个位的前缀和之差必然完全相等,其实我们也不必直接去求前缀和之差,直接可以用平衡树进行形态存储——形态存储指的是将各个位上的累加数字关于第一个元素进行个相对化——比如(2,4,6)可以转化为(0,2,4),而(4,6,8)也可以转为(0,2,4)这样如果两个前缀和数组可以构成形态相等的话,那就意味着中间这一段符合题目中所述的各个位累加和相等,于是用一颗平衡树存储即可,时间复杂度\( O\left(N M \log N \right) \)
/**************************************************************
Problem:
User: HansBug
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ type
list=array[..] of longint;
var
i,j,k,l,m,n,head:longint;
a:array[..] of list;
fix,lef,rig:array[..] of longint;
function putin(x:longint;var a:list):longint;
var i:longint;
begin
fillchar(a,sizeof(a),);
i:=;
while x> do
begin
inc(i);
a[i]:=x mod ;
x:=x div ;
end;
end;
function min(x,y:longint):longint;
begin
if x<y then min:=x else min:=y;
end;
function max(x,y:longint):longint;
begin
if x>y then max:=x else max:=y;
end;
function fc(a,b:list):longint;
var i,j,k:longint;
begin
fc:=;
for i:= to m do
begin
j:=(a[i]-a[])-(b[i]-b[]);
if j> then exit();
if j< then exit(-);
end;
end;
procedure lt(var x:longint);
var f,r:longint;
begin
if (x=) or (rig[x]=) then exit;
f:=x;r:=rig[x];
rig[f]:=lef[r];
lef[r]:=f;
x:=r;
end;
procedure rt(var x:longint);
var f,l:longint;
begin
if (x=) or (lef[x]=) then exit;
f:=x;l:=lef[x];
lef[f]:=rig[l];
rig[l]:=f;
x:=l;
end;
function ins(var x:longint;y:longint):longint;
begin
if x= then
begin
x:=y;
exit(y);
end;
j:=fc(a[x],a[y]);
case j of
:exit(x);
:begin
if lef[x]= then
begin
lef[x]:=y;
ins:=y;
end
else ins:=ins(lef[x],y);
if fix[lef[x]]<fix[x] then rt(x);
end;
-:begin
if rig[x]= then
begin
rig[x]:=y;
ins:=y;
end
else ins:=ins(rig[x],y);
if fix[rig[x]]<fix[x] then lt(x);
end;
end;
end;
begin
readln(n,m);randomize;
fillchar(lef,sizeof(lef),);
fillchar(rig,sizeof(rig),);
for i:= to n+ do
begin
if i= then putin(,a[i]) else
begin
readln(j);
putin(j,a[i]);
end;
for j:= to m do a[i][j]:=a[i-][j]+a[i][j];
fix[i]:=random(maxlongint);
end;
head:=;l:=;
for i:= to n+ do
begin
j:=ins(head,i);
l:=max(l,i-j);
end;
writeln(l);
readln;
end.
1702: [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列的更多相关文章
- bzoj 1702: [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列——map+hash+转换
Description N(1<=N<=100000)头牛,一共K(1<=K<=30)种特色, 每头牛有多种特色,用二进制01表示它的特色ID.比如特色ID为13(1101), ...
- 【BZOJ】1702: [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列
[题意]给定n头牛,k个特色,给出每头牛拥有哪些特色的二进制对应数字,[i,j]平衡当且仅当第i~j头牛的所有特色数量都相等,求最长区间长度. [算法]平衡树+数学转化 [题解]统计前缀和sum[i] ...
- bzoj 1702: [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列【hash】
我%&&--&()&%????? 双模hashWA,unsigned long longAC,而且必须判断hash出来的数不能为0???? 我可能学了假的hash 这个 ...
- [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列
Description N(1<=N<=100000)头牛,一共K(1<=K<=30)种特色,每头牛有多种特色,用二进制01表示它的特色ID.比如特色ID为13(1101),则 ...
- BZOJ1702: [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列
n<=100000个数表示每头牛在K<=30种物品的选取情况,该数在二进制下某位为0表示不选1表示选,求一个最大的区间使区间内选择每种物品的牛一样多. 数学转化,把不同状态间单变量的关系通 ...
- 哈希-Gold Balanced Lineup 分类: POJ 哈希 2015-08-07 09:04 2人阅读 评论(0) 收藏
Gold Balanced Lineup Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13215 Accepted: 3873 ...
- POJ 3274 Gold Balanced Lineup
Gold Balanced Lineup Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10924 Accepted: 3244 ...
- POJ 3274:Gold Balanced Lineup 做了两个小时的哈希
Gold Balanced Lineup Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13540 Accepted: ...
- 洛谷 P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维)
P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维) 前言 题目链接 本题作为一道Stl练习题来说,还是非常不错的,解决的思维比较巧妙 算是一道不错的题 ...
随机推荐
- Linux笔记(七) - 网络命令
(1)给用户发信息:write例:write admin(ctrl+d结束)(2)发广播信息:wall例:wall hello world!(3)测试网络连通性:ping-c 发送次数例:ping - ...
- JS加载相对路径脚本的方法 - 汇总
js加载脚本的方式有很多,但是各有各的用途. 最近公司https项目改造,对于资源文件这一块,也是遇到一些问题,现在就来总结一下,怎样改造https的脚本吧~! 方法1.借助服务端语言如PHP,输入当 ...
- 微信小程序教程(第一篇)
目录 第一篇小程序概述 第二篇如何注册接入小程序及搭建开发环境 第三篇小程序的架构及实现机制,信道服务及会话管理 第四篇小程序开发基本框架及其限制与优化 第五篇小程序开发项目实例,测试及发布 .... ...
- Eclipse运行时无法加载主类的解决方法
测试代码: package javastudy; class Person { public static void main(String[] args) { PersonCeshi pp=new ...
- Effective前端6:避免页面卡顿
.aligncenter { clear: both; display: block; margin-left: auto; margin-right: auto } .crayon-line spa ...
- 【2(2N+1)魔方阵 】
/* 2(2N+1)魔方阵 */ #include<stdio.h> #include<stdlib.h> #define N 6 #define SWAP(x, y) {in ...
- [Hadoop] - TaskTracker源码分析
在Hadoop1.x版本中,MapReduce采用master/salve架构,TaskTracker就是这个架构中的slave部分.TaskTracker以服务组件的形式存在,负责任务的执行和任务状 ...
- 使用curl上传报错问题排查
1. THE STOR COMMAND 说明存储出了问题,处理方案: 方案1: 请检查ftp服务器存储是否已满,若已满则清理一下空间即可. 方案2: 若ftp服务器存储未满,请检查是否有上传了的文件, ...
- c#之循环效率
很多人在保存数据时候对于使用数组.集合等?然后遍历数据的时候是for.froeach? 下面我就写一个小例子进行测试看看,话不多说,直接用数据说话. 1.构建数据分别是数组.集合构建,数据类型分别是值 ...
- [Qt初级] 解决 中QMainWindow和QDockWidget添加布局失败问题
初接触Qt,使用的教程是陆文周编写的<Qt5开发及实例>一书. 其中有关于QDockWidget.QStackedWidget这些类的介绍和使用实例. 要首先说明的是书上讲的非常的清楚,代 ...