loj1370(欧拉函数+线段树)
题意:给出多个n(1<=n<=1e6),求满足phi(x)>=n的最小的x之和。
分析:先预处理出1~1e6的欧拉函数,然后建立一颗线段树维护最大值,对于每个n询问大于等于n的最左边下标。
#pragma comment(linker,"/STACK:1024000000,1024000000")
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <limits.h>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 100000000
#define inf 0x3f3f3f3f
#define eps 1e-6
#define N 1001000
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define PII pair<int,int>
using namespace std;
inline LL read()
{
char ch=getchar();LL x=,f=;
while(ch>''||ch<''){if(ch=='-')f=-;ch=getchar();}
while(ch<=''&&ch>=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int phi[N+],prime[N/],mx[N<<];
void init()
{
for(int i=;i<=N;i++)phi[i]=i;
int tot=;
for(int i=;i<=N;i++)
{
if(phi[i]==i)
{
for(int j=i;j<=N;j+=i)
phi[j]=phi[j]/i*(i-);
}
}
}
void Pushup(int rt)
{
int ls=rt<<,rs=ls|;
mx[rt]=max(mx[ls],mx[rs]);
}
void build(int l,int r,int rt)
{
if(l==r)
{
mx[rt]=phi[l];
return;
}
int m=(l+r)>>;
build(lson);
build(rson);
Pushup(rt);
}
int query(int x,int l,int r,int rt)
{
if(l==r)return l;
int m=(l+r)>>;
if(mx[rt<<]>=x)return query(x,lson);
else return query(x,rson);
}
int main()
{
int T,n,cas=;
init();
build(,N,);
T=read();
while(T--)
{
n=read();
LL ans=;
for(int i=;i<=n;i++)
{
int x=read();
ans+=query(x,,N,);
}
printf("Case %d: %lld Xukha\n",cas++,ans);
}
}
loj1370(欧拉函数+线段树)的更多相关文章
- LightOJ 1370 Bi-shoe and Phi-shoe 欧拉函数+线段树
分析:对于每个数,找到欧拉函数值大于它的,且标号最小的,预处理欧拉函数,然后按值建线段树就可以了 #include <iostream> #include <stdio.h> ...
- [BZOJ4026]dC Loves Number Theory 欧拉函数+线段树
链接 题意:给定长度为 \(n\) 的序列 A,每次求区间 \([l,r]\) 的乘积的欧拉函数 题解 考虑离线怎么搞,将询问按右端点排序,然后按顺序扫这个序列 对于每个 \(A_i\) ,枚举它的质 ...
- LOJ #2142. 「SHOI2017」相逢是问候(欧拉函数 + 线段树)
题意 给出一个长度为 \(n\) 的序列 \(\{a_i\}\) 以及一个数 \(p\) ,现在有 \(m\) 次操作,每次操作将 \([l, r]\) 区间内的 \(a_i\) 变成 \(c^{a_ ...
- bzoj4869: [Shoi2017]相逢是问候(欧拉函数+线段树)
这题是六省联考的...据说数据还出了点锅,心疼六省选手QAQ 首先要知道扩展欧拉定理... 可以发现每次区间操作都会使模数进行一次phi操作,而一个数最多取logp次phi就会变成1,这时后面的指数就 ...
- [LNOI] 相逢是问候 || 扩展欧拉函数+线段树
原题为2017六省联考的D1T3 给出一个序列,m次操作,模数p和参数c 操作分为两种: 1.将[l,r]区间内的每个数x变为\(c^x\) 2.求[l,r]区间内数的和%p 首先,我们要了解一些数论 ...
- BZOJ 4034 树上操作(树的欧拉序列+线段树)
刷个清新的数据结构题爽一爽? 题意: 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x ...
- BZOJ 4034 [HAOI2015]树上操作(欧拉序+线段树)
题意: 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增 ...
- BZOJ 4034: [HAOI2015]树上操作 [欧拉序列 线段树]
题意: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a . 操作 3 :询问某个节点 x 到根的路径中所有点的点权和. 显然树链剖分可做 ...
- CF1114F Please, another Queries on Array?(线段树,数论,欧拉函数,状态压缩)
这题我在考场上也是想出了正解的……但是没调出来. 题目链接:CF原网 题目大意:给一个长度为 $n$ 的序列 $a$,$q$ 个操作:区间乘 $x$,求区间乘积的欧拉函数模 $10^9+7$ 的值. ...
随机推荐
- Python 脚本帮你找出微信上删除了你的“好友“
- kettle 数据迁移 (转)
最近在公司搞一个项目重构迁移问题,旧项目一直在线上跑,重构的项目则还没上线.重构之后数据库表结构,字段,类型等都有变化,而且重构的数据库由oracl改为mysql.这样就设计到数据迁移问题,别人推荐下 ...
- 定义自己的仪表板DashBoard - -kankanstyle
既然做了奶站软件,需要使用的仪表板,显示质量数据 public class MDashboard extends ImageView { private Bitmap mPointerBitmap; ...
- Swift - 做一个简单的无线U盘(手机端Http服务器搭建)
由于iOS系统的封闭性,在数据传输方面十分不方便.不像安卓设备,直接连接电脑就能当U盘使用.所以一般我们如果用iPhone临时存取个东西,要么使用数据线连接iTunes,要么手机电脑都登上QQ,使用Q ...
- gbs remotebuild使用说明
本文件从:https://source.tizen.org/documentation/articles/gbs-remotebuild翻译而来. 1 远程构建 使用remotebuild子指令将本地 ...
- 浅谈C#中的泛型
1.什么是泛型? 泛型是程序设计语言的一种特性.允许程序员在强类型程序设计语言中编写 代码时定义一些可变部分,那些部分在使用前必须作出指明.各种程序设计语言和其编译器.运行环境对泛型的支持均不一样.将 ...
- 类CL_ABAP_TYPEDESCR,动态取得运行时类型
有时候我们要在程序运行的时候取得某个内表或者某个结构它的属性或者它的字段的属性,可能通过类CL_ABAP_TYPEDESCR和它的子类取得指定内表的属性.类CL_ABAP_TYPEDESCR和它的子类 ...
- 在JavaScript函数中使用EL表达式注意的事项
最近在使用JSP显示从Servlet带过来的数据时,大量的使用到了EL表达式,并且有些EL表达式是在使用到JavaScript的函数时作为参数传入的,举个例子,比如下面的样子: 这个HTML标签的意思 ...
- HDU2504 又见GCD
又见GCD Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Subm ...
- ZigBee研究之旅(一)
*********************************************************************** 以下有引用webee公司的文档的内容,版权属于webee ...