首先有一个暴力的做法,将任意两个点判断,可以得到与之相关的1或3只变色龙:1只是两只变色龙相互喜欢,那么剩下那只就是颜色相同;3只从3只选2只并和自己判断一次,结果为1的那次剩下的那个就是他喜欢的,然后将所有喜欢关系删掉后剩下的就是颜色相同
但这样一开始需要$o(n^2)$次的判断,考虑优化,如果将点划分成若干个集合,每一个集合内部没有特殊关系就可行了,然后就可以再集合中二分来查找了,那么直接对前i-1个点构成的图染成2种颜色(4种颜色容易超过次数),分别进行二分查找即可,次数是$o(nlogn)$的,常数要注意(4种颜色的要注意要取编号最小的颜色,不然会被卡)

 1 #include "chameleon.h"
2 #include <bits/stdc++.h>
3 using namespace std;
4 #define N 1005
5 vector<int>v,p[11],vec[N];
6 int vis[N],to[N],ans[N][2];
7 bool pd(vector<int> &k,int l,int r,int x){
8 p[4].clear();
9 p[4].push_back(x);
10 for(int i=l;i<=r;i++)p[4].push_back(k[i]);
11 return Query(p[4])<p[4].size();
12 }
13 void find(vector<int> &a,int l,int r,int i){
14 int rr=r;
15 while (1){
16 r=rr;
17 if ((vec[i].size()==3)||(!pd(a,l,r,i)))return;
18 while (l<r){
19 int mid=(l+r>>1);
20 if (pd(a,l,mid,i))r=mid;
21 else l=mid+1;
22 }
23 vec[i].push_back(a[l]);
24 vec[a[l]].push_back(i);
25 l++;
26 }
27 }
28 void Solve(int n){
29 n*=2;
30 for(int i=1;i<=n;i++){
31 int flag=4;
32 for(int j=0;j<4;j++)
33 if ((vec[i].size()==3)||(!pd(p[j],0,p[j].size()-1,i)))flag=min(flag,j);
34 else find(p[j],0,p[j].size()-1,i);
35 p[flag].push_back(i);
36 }
37 int t=0;
38 for(int i=1;i<=n;i++){
39 if (vec[i].size()<3)continue;
40 vis[i]=1;
41 for(int j=0;j<2;j++)
42 for(int k=j+1;k<3;k++){
43 v.clear();
44 v.push_back(i);
45 v.push_back(vec[i][j]);
46 v.push_back(vec[i][k]);
47 if (Query(v)==1){
48 to[i]=vec[i][3-j-k];
49 j=k=3;
50 }
51 }
52 if (!to[i])to[i]=vec[i][0];
53 }
54 for(int i=1;i<=n;i++)
55 if (vis[i]){
56 for(int j=0;j<3;j++)
57 if (vec[i][j]==to[i])vec[i][j]=0;
58 for(int j=0;j<3;j++)
59 if (vec[to[i]][j]==i)vec[to[i]][j]=0;
60 }
61 for(int i=1;i<=n;i++)
62 if (vis[i])
63 for(int j=0;j<3;j++)
64 if ((vec[i][j])&&(vec[i][j]<i)&&(vec[vec[i][j]].size()==3)){
65 ans[++t][0]=i;
66 ans[t][1]=vec[i][j];
67 }
68 for(int i=1;i<=n;i++)
69 if (vec[i].size()==1){
70 if ((vec[vec[i][0]].size()==1)&&(i>vec[i][0]))continue;
71 ans[++t][0]=i;
72 ans[t][1]=vec[i][0];
73 }
74 for(int i=1;i<=n/2;i++)Answer(ans[i][0],ans[i][1]);
75 }

[loj3274]变色龙之恋的更多相关文章

  1. JOISC2020 题解

    Day1T1 建筑装饰4 题目链接:Day1T1 建筑装饰4 Solution 我们先考虑朴素的\(dp\)方法: 设\(dp_{i,j,k}\)表示前\(i\)个数中,选了\(j\)个\(B\)数组 ...

  2. HP 820 G2变色龙安装10.11.6基本完美

    初始状态: 一块ssd硬盘,MBR格式分区,安装了WIN7 64位. 不想动win系统,因此就安装在硬盘的扩展分区 电脑配置: cpu: i7-5600u 声卡: ALC280 显卡: HD55 ...

  3. 变色龙安装程序 Chameleon Install 2.2 svn 2281发布

    变色龙安装程序 Chameleon Install 2.2 svn 2281发布 1.更好的支持10.9 Mavericks2.更新ATi.nVidia显卡支持列表3.添加新的 CPU Model I ...

  4. iATKOS v7硬盘安装教程(硬盘助手+变色龙安装版)

    这是作者:Tong 写的一篇安装教程 首先感谢:wowpc制作的变色龙安装版.iATKOS作者以及硬盘安装助手作者 前言:现在时代在进步,系统同样也在进步,在以前要在PC上整个Mac是很痛苦的事情,就 ...

  5. EasyBCD 2.2中文版安装变色龙wowpc.iso详细教程(适用各个版本)

    第一章 安装变色龙引导本章节提供3种安装方案,请自行选择 1.使用 Windows 版变色龙安装器安装适用引导方案:BIOS+MBR第1步:下载 Chameleon Install 2.2svn228 ...

  6. 纯windows下制作变色龙引导安装U盘教程

    原创教程:纯windows下制作变色龙引导安装U盘教程 支持Mavericks和Yosemite 支持白苹果 目标:windows下制作带 Chamelon变色龙引导的黑苹果安装U盘,支持PC机引导安 ...

  7. bzoj 3435: [Wc2014]紫荆花之恋 替罪羊树维护点分治 && AC400

    3435: [Wc2014]紫荆花之恋 Time Limit: 240 Sec  Memory Limit: 512 MBSubmit: 159  Solved: 40[Submit][Status] ...

  8. 轻奢当道业绩逆势增长 Kate Spade联手韩国衣恋开拓中国市场_商场报道_中国时尚品牌网

    轻奢当道业绩逆势增长 Kate Spade联手韩国衣恋开拓中国市场_商场报道_中国时尚品牌网 轻奢当道业绩逆势增长 Kate Spade联手韩国衣恋开拓中国市场

  9. Java之恋

    初次见面那是一个河北的夏天风随沙散落天涯蝴蝶依旧恋着花回首走过的日子手指和键盘之间的梦想之光已恍如昨日 那年我还是一个刚踏进这个曾经只在地理课本上狂念南稻北麦,南油北花的土地那年你只是我必须要学的编程 ...

随机推荐

  1. Linux虚拟机配置静态ip地址

    使用VMware搭建的虚拟机ip地址经常变动,在这里记录一下虚拟机设置静态ip地址: 首先通过VMware菜单栏编辑->虚拟网络编辑器->NAT设置查看子网ip地址和网关ip: 例如我这里 ...

  2. vue 中级基础考察面试题

    vue 生命周期有哪些 beforeCreate created beforeMount mounted beforeUpdate updated activated deactivated befo ...

  3. 【Ubuntu】VirtualBox 您没有查看“sf_VirtualDisk”的内容所需的权限

    ​ 但是现在发现无法去访问,没有权限: ​ 即使是: crifan@crifan-Ubuntu:~$ sudo chown -R crifan /media/sf_win7_to_ubuntu/ cr ...

  4. css3新增属性-background背景

    css3新增属性 边框属性 背景属性 文字属性 颜色属性 背景属性 属性 说明 background-image 添加背景图片 background-size 指定背景图像的大小 background ...

  5. NOI 2021 部分题目题解

    最近几天复盘了一下NOI 2021,愈发发觉自己的愚蠢,可惜D2T3仍是不会,于是只写前面的题解 Day1 T1 可以发现,每次相当于将 \(x\to y\) 染上一种全新颜色,然后一条边是重边当且仅 ...

  6. SpringBoot-自动装配2

    配置文件到底能写什么?怎么写? SpringBoot官方文档中有大量的配置,直接去记忆的话,好像不是我们程序员的行事风格! 分析自动配置原理 能自动配置的组件一般都有命名为下面规则的两个类: xxxx ...

  7. 纯前端H5小应用_localStorage存储

    开发缘由[需求发现和分析] 想要送朋友一个礼物,但是想了想,街上买的东西,em~,我们这样的猿确实不会选礼物啊,由此就想利用自己手中的工具和知识做点有用的东西吧,抱枕是礼物,钢笔是礼物,电子产品也是礼 ...

  8. TypeScript中将函数中的局部变量“导出”的方法

    首先是在模块a.js中声明一个可导出(export)的数据结构,例如: export class ModelInfo{ id: string; name:string; } 其次是在模块b中声明可导出 ...

  9. 从原理—实战分析SQL注入

    前言 SQL注入是web安全中最常见的攻击方式,SQL注入有很多方法,但如果只知道payload或只用用sqlmap,不知道原理,感觉也很难掌握,这次就总结一下我所遇到的SQL注入方法,原理分析+题目 ...

  10. cunda 常用命令,删除,创建,换源

    https://github.com/tensorflow/tensorflow/ conda create --name [虚拟环境名] python=3.7 创建一个环境 conda activa ...