题目传送门

Description

现在有 \(n\) 棵以 \(1\) 为根的树,每棵树有一个生长节点,有 \(m\) 次操作,每次操作是下面三种中的一个:

  • 在 \(l\sim r\) 的这些树的生长节点下面增加一个新的节点

  • 将 \(l\sim r\) 的生长节点都变为 \(x\)

  • 查询第 \(x\) 棵树种 \(u\sim v\) 的距离

\(n\le 10^5,m\le 2\times 10^5\)

Solution

我们可以发现的是,我们加点或者增加新节点并不会改变已有查询的答案,也就是说,我们是可以离线的。另外,我们可以发现,增加多的点并不会有什么影响,也就是说,我们第一个操作就没有什么意义了,可以大家一起加。

考虑操作 \(2\),可以想到的是,假如我们的生长节点是 \(x_1\to x_2\),那么,其实我们也可以理解为生长节点不变,在查询的时候,把更改后这段时间中增加的节点都加到 \(x_2\) 来。于是,我们就需要实现类似于子树转移的东西,这个可以新建一个虚点,所有点都连到虚点上,直接虚点改变父亲就好了。

对于查询而言,我们肯定是离线下来。因为每次操作都是区间操作,所以我们可以用类似于差分的方法来一棵一颗的统计。我们可以先处理出来每次要在哪里把那个子树转移到哪里。对于操作 \(2\) 来说,就可以变为在 \(l\) 处把上一次操作 \(2\) 到此次操作 \(2\) 之间加入的点的子树都转移到 \(x_2\),然后在 \(r+1\) 又转移到 \(x_1\)。

于是,问题就是如何查询一棵树上两个点之间的距离了。我们可以直接用 \(\text{access}\) 求到两个点的 \(\text{lca}\) 然后差分一波就好了。

时间复杂度 \(\Theta((n+m)\log n)\)。

Code

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define MAXN 300005 template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} int n,m,cnt,fuc,las,tot,qL[MAXN],qR[MAXN],ans[MAXN],ind[MAXN],sum[MAXN],val[MAXN],par[MAXN],son[MAXN][2]; bool rnk (int x){return son[par[x]][1] == x;}
bool Isroot (int x){return son[par[x]][0] != x && son[par[x]][1] != x;}
void Pushup (int x){sum[x] = sum[son[x][0]] + sum[son[x][1]] + val[x];}
void newnode (int v){++ cnt,val[cnt] = sum[cnt] = v;}
void rotate (int x){
int y = par[x],z = par[y],k = rnk (x),w = son[x][!k];
if (!Isroot (y)) son[z][rnk (y)] = x;son[x][!k] = y,son[y][rnk (x)] = w;
if (w) par[w] = y;par[x] = z,par[y] = x;
Pushup (y),Pushup (x);
}
void Splay (int x){
while (!Isroot (x)){
int y = par[x];
if (!Isroot (y)) rotate (rnk (x) == rnk (y) ? y : x);
rotate (x);
}
}
int Access (int x){int y;for (y = 0;x;x = par[y = x]) Splay (x),son[x][1] = y,Pushup (x);return y; }
int getans (int x,int y){
int ans = 0,s;Access (x),Splay (x),ans += sum[x],s = Access (y),Splay (y),ans += sum[y],Access (s),Splay (s),ans -= 2 * sum[s];
return ans;
}
void link (int x,int y){Splay (x),par[x] = y;}
void cut (int x){Access (x),Splay (x),par[son[x][0]] = 0,son[x][0] = 0;Pushup (x);} struct node{
int pos,tim,x,y;
bool operator < (const node &p)const{return pos != p.pos ? pos < p.pos : tim < p.tim;}
}q[MAXN]; signed main(){
read (n,m);newnode (1),qL[1] = 1,qR[1] = n,las = ind[fuc = 1] = 1;int qn = 0;
for (Int i = 1;i <= m;++ i){
int opt,x,y;read (opt,x,y);
if (opt == 0) ++ fuc,newnode (1),ind[fuc] = cnt,qL[fuc] = x,qR[fuc] = y,q[++ tot] = node {1,i - m,cnt,las};
else if (opt == 1){
int k;read (k);
x = max (x,qL[k]),y = min (y,qR[k]);
if (x <= y) newnode (0),link (cnt,las),q[++ tot] = node {x,i - m,cnt,ind[k]},q[++ tot] = node {y + 1,i - m,cnt,las},las = cnt;
}
else{
int k;read (k);
q[++ tot] = node {x,++ qn,ind[y],ind[k]};
}
}
sort (q + 1,q + tot + 1),memset (ans,-1,sizeof (ans));
for (Int i = 1,j = 1;i <= n;++ i)
for (;q[j].pos == i;++ j){
if (q[j].tim <= 0) cut (q[j].x),link (q[j].x,q[j].y);
else ans[q[j].tim] = getans (q[j].x,q[j].y);
}
for (Int i = 1;i <= qn;++ i) write (ans[i]),putchar ('\n');
return 0;
}

题解 [ZJOI2016]大森林的更多相关文章

  1. BZOJ4573:[ZJOI2016]大森林——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=4573 https://www.luogu.org/problemnew/show/P3348#sub ...

  2. [ZJOI2016]大森林(LCT)

    题目描述 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点,这些节点有生长出子节点的能力. 小Y掌握了一种 ...

  3. bzoj 4573: [Zjoi2016]大森林

    Description 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树 都有一个特殊的节点,我们称之为生长节点,这些节点有生长出子节点的能力. ...

  4. P3348 [ZJOI2016]大森林

    \(\color{#0066ff}{ 题目描述 }\) 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点, ...

  5. [ZJOI2016]大森林

    Description: 小Y家里有一个大森林,里面有n棵树,编号从1到n 0 l r 表示将第 l 棵树到第 r 棵树的生长节点下面长出一个子节点,子节点的标号为上一个 0 号操作叶子标号加 1(例 ...

  6. 【刷题】BZOJ 4573 [Zjoi2016]大森林

    Description 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点,这些节点有生长出子节点的能力.小 ...

  7. 【LuoguP3348】[ZJOI2016]大森林

    题目链接 题目描述 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点,这些节点有生长出子节点的能力. 小Y ...

  8. ●洛谷P3348 [ZJOI2016]大森林

    题链: https://www.luogu.org/problemnew/show/P3348 题解: LCT,神题 首先有这么一个结论: 每次的1操作(改变生长点操作),一定只会会对连续的一段区间产 ...

  9. 洛谷P3348 [ZJOI2016]大森林 [LCT]

    传送门 刷了那么久水题之后终于有一题可以来写写博客了. 但是这题太神仙了我还没完全弄懂-- upd:写完博客之后似乎懂了. 思路 首先很容易想到\(O(n^2\log n)\)乘上\(O(\frac{ ...

随机推荐

  1. IDEA快捷键命令

    Ctrl+Alt+T   IDEl 抛异常快捷键ctrl +o  继承类时 继承方法快捷键Ctrl+Alt+左右方向键  回到上次光标停留的地方ALt +left/right  快速切换两个页面ctr ...

  2. 学习小计: Kaggle Learn Time Series Modeling

    ARIMA模型,参数含义参考:https://www.cnblogs.com/bradleon/p/6827109.html from statsmodels.tsa.arima_model impo ...

  3. VS2017 添加预定义宏

    project_name[right click] -> Properties -> C/C++ -> Preprocessor -> Preprocessor Definit ...

  4. 基于SigalR实现的奥运会实时金牌榜

    系统架构 三端 winform 后台数据管理 + Asp.Net Mvc 前台数据展示 + Xamarin.Forms 移动端跨平台APP 因为本人的代码水平一般,期间遇到了一些问题,如signalR ...

  5. vue2+vite初体验

    前言 自从 vite 发布之后,社区赞誉无数,而我也一直心水 vite 的轻量快速的热重载的特性,特别是公司的项目巨大,已经严重拖慢了热重载的速度了,每次热重载都要等上一小会,所以急需寻找一个解决方案 ...

  6. openswan协商流程之(五):main_inR2_outI3()

    主模式第五包:main_inR2_outI3 文章目录 主模式第五包:main_inR2_outI3 1. 序言 2.函数调用关系 3. 第五个报文流程图 4. main_inR2_outI3()源码 ...

  7. SVN无法查看最近日志和提交记录

    现象: 使用SVN查看最近的提交记录日志时,最近总是无法显示出全部的日志内容,只能显示到几天之前的日志.就算是自己刚提交的代码也是无法没有记录的. 解决方式:右键选择TortoiseSVN中的&quo ...

  8. Webpack:打包项目报错(eslint: debugger)

    打包项目需要把项目中的debugger删除,否则会报错.

  9. Web GIS 航拍实现的智慧园区数字孪生应用

    前言 随着智慧城市建设的不断发展,智慧园区作为智慧城市的先行区,其覆盖区域越来越大,产值越来越集中,对于园区数字化建设和智能化管理的诉求也愈加强烈.园区数字化管理是以实现园区多维度业务数据汇聚.融合. ...

  10. Win8 iis 环境搭建

    http://www.cnblogs.com/Joans/archive/2012/07/16/2593828.html 系统:win8 环境:vs2012 一:安装IIS 比较win7的安装来说,多 ...