C. Hongcow Builds A Nation
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Hongcow is ruler of the world. As ruler of the world, he wants to make it easier for people to travel by road within their own countries.

The world can be modeled as an undirected graph with n nodes and m edges. k of the nodes are home to the governments of the k countries that make up the world.

There is at most one edge connecting any two nodes and no edge connects a node to itself. Furthermore, for any two nodes corresponding to governments, there is no path between those two nodes. Any graph that satisfies all of these conditions is stable.

Hongcow wants to add as many edges as possible to the graph while keeping it stable. Determine the maximum number of edges Hongcow can add.

Input

The first line of input will contain three integers n, m and k (1 ≤ n ≤ 1 000, 0 ≤ m ≤ 100 000, 1 ≤ k ≤ n) — the number of vertices and edges in the graph, and the number of vertices that are homes of the government.

The next line of input will contain k integers c1, c2, ..., ck (1 ≤ ci ≤ n). These integers will be pairwise distinct and denote the nodes that are home to the governments in this world.

The following m lines of input will contain two integers ui and vi (1 ≤ ui, vi ≤ n). This denotes an undirected edge between nodes ui and vi.

It is guaranteed that the graph described by the input is stable.

Output

Output a single integer, the maximum number of edges Hongcow can add to the graph while keeping it stable.

Examples
Input
4 1 2
1 3
1 2
Output
2
Input
3 3 1
2
1 2
1 3
2 3
Output
0
Note

For the first sample test, the graph looks like this:

Vertices 1 and 3 are special. The optimal solution is to connect vertex 4 to vertices 1 and 2. This adds a total of 2 edges. We cannot add any more edges, since vertices 1 and 3 cannot have any path between them.

For the second sample test, the graph looks like this:

We cannot add any more edges to this graph. Note that we are not allowed to add self-loops, and the graph must be simple.

题意:给你n个点,然后m条边,和k个特殊的点,问最多再能连多少条边,要求k个点是两两不联通的;
思路:并查集:
找出联通块,然后将没有那些特殊点的先合并再一块-->t,sum为答案,sum+=cnt[t]*(cnt[t]-1)/2-原来有的边,然后再在特殊的点中找含点最多的和他和并统计答案,并且加上其他特殊联通块最多能加的边。
  1 #include<iostream>
2 #include<string.h>
3 #include<algorithm>
4 #include<queue>
5 #include<math.h>
6 #include<stdlib.h>
7 #include<stack>
8 #include<stdio.h>
9 #include<ctype.h>
10 #include<map>
11 #include<vector>
12 using namespace std;
13 typedef long long LL;
14 int c[100005];
15 int bin[100005];
16 int du[100005];
17 vector<int>vec[100005];
18 int fin(int x);
19 int ask[100005];
20 int id[100005];
21 map<int,int>my;
22 LL bian[100005];
23 int main(void)
24 {
25 int n,m,k;
26 int i,j;
27
28 while(scanf("%d %d %d",&n,&m,&k)!=EOF)
29 {
30 my.clear();
31 memset(bian,0,sizeof(bian));
32 for(i = 0; i <100005; i++)vec[i].clear(),bin[i] = i,du[i] = 1;
33 for(i = 1; i <=k; i++)
34 scanf("%d",&c[i]);
35 while(m--)
36 {
37 int x,y;
38 scanf("%d %d",&x,&y);
39 vec[x].push_back(y);
40 vec[y].push_back(x);
41 int xx = fin(x);
42 int yy = fin(y);
43 if(xx!=yy)
44 {
45 if(du[xx] > du[yy])
46 {
47 du[xx] += du[yy],bin[yy] = xx;
48 bian[xx]+=bian[yy];
49 bian[xx]++;
50 }
51 else
52 {
53 du[yy] += du[xx],bin[xx] = yy;
54 bian[yy]+=bian[xx];
55 bian[yy]++;
56 }
57 }
58 else bian[xx]++;
59 }
60 for(i = 1; i <= n; i++)
61 {
62 ask[i] = fin(i);
63 }
64 LL maxx = 0;
65 LL b;
66 for(i = 1; i <= k; i++)
67 {
68 my[ask[c[i]]] = 1;
69 if(du[ask[c[i]]]>maxx)
70 {
71 maxx = max((LL)du[ask[c[i]]],maxx);
72 b = bian[ask[c[i]]];
73 }
74 }
75 LL cnt = 0;
76 LL mc = 0;
77 for(i = 1; i <= n; i++)
78 {
79 if(!my.count(ask[i]))
80 {
81 cnt+=du[ask[i]];
82 my[ask[i]] = 1;
83 mc+=bian[ask[i]];
84 }
85 }//printf("%lld\n",maxx);
86 LL acc = cnt*(cnt-1)/(LL)2;
87 LL akk = acc;
88 acc+=maxx*cnt;
89 acc-=mc;
90 for(i = 1;i <= k;i++)
91 {
92 acc+=(LL)du[ask[c[i]]]*(LL)(du[ask[c[i]]]-1)/(LL)2;
93 acc-=bian[ask[c[i]]];
94 }
95 printf("%lld\n",acc);
96 }
97 return 0;
98 }
99 int fin(int x)
100 {
101 int i;
102 for(i = x; i!=bin[i];)
103 i = bin[i];
104 return i;
105 }

C. Hongcow Builds A Nation的更多相关文章

  1. Codeforces 744A. Hongcow Builds A Nation

    A. Hongcow Builds A Nation 题意: 现在有 n 个点 ,m 条边组成了一个无向图 , 其中有 k 个特殊点, 这些特殊点之间不能连通 ,问可以再多加几条边? 因为$x^2+y ...

  2. Codeforces Round #385 (Div. 2) Hongcow Builds A Nation —— 图论计数

    题目链接:http://codeforces.com/contest/745/problem/C C. Hongcow Builds A Nation time limit per test 2 se ...

  3. Codeforces 745C:Hongcow Builds A Nation(并查集)

    http://codeforces.com/problemset/problem/744/A 题意:在一个图里面有n个点m条边,还有k个点是受限制的,即不能从一个受限制的点走到另外一个受限制的点(有路 ...

  4. C. Hongcow Builds A Nation 并查集

    http://codeforces.com/contest/745/problem/C 把他们并查集后, 其他没有连去government的点,全部放去同一个并查集,然后选择一个节点数最多的gover ...

  5. Codeforces Round #385 (Div. 2) C - Hongcow Builds A Nation

    题目链接:http://codeforces.com/contest/745/problem/C 题意:给出n个点m条边,还有k个不能连通的点,问最多能添加几条边. 要知道如果有n个点最多的边是n*( ...

  6. Codeforces Round #385 (Div. 2) A,B,C 暴力,模拟,并查集

    A. Hongcow Learns the Cyclic Shift time limit per test 2 seconds memory limit per test 256 megabytes ...

  7. Codeforces Round #385 //再遇状压

    敲完三题挂机一小时.....  也没懂DE什么意思  rank600上了一波分... A. Hongcow Learns the Cyclic Shift 给一个字符串,每次可以把最后一个字符拿到开头 ...

  8. Codeforces Round #385 (Div. 2)A B C 模拟 水 并查集

    A. Hongcow Learns the Cyclic Shift time limit per test 2 seconds memory limit per test 256 megabytes ...

  9. cf744

    Codeforces Round #385 (Div. 1) <br > A.Hongcow Builds A Nation 贪心. 显然就是凑成一个最大的块即可 那么首先并查集处理已经确 ...

随机推荐

  1. 作业帮上万个 CronJob 和在线业务混部,如何解决弱隔离问题并进一步提升资源利用率?

    作者 吕亚霖,作业帮基础架构 - 架构研发团队负责人.负责技术中台和基础架构工作.在作业帮期间主导了云原生架构演进.推动实施容器化改造.服务治理.GO 微服务框架.DevOps 的落地实践. 别路,作 ...

  2. 详解 Rainbond Ingress 泛解析域名机制

    Rainbond 作为一款云原生应用管理平台,天生带有引导南北向网络流量的分布式网关 rbd-gateway.区别于一般的 Ingress 配置中,用户需要自行定义域名的使用体验,Rainbond 的 ...

  3. A Child's History of England.46

    As, one hundred years before, the servile [卑躬屈膝的~serve] followers of the Court had abandoned the Con ...

  4. day08 文件属性

    day08 系统目录 今日内容 一.重要目录 1./usr 2./var 3./proc 二.文件的属性 1.文件属性的介绍 2.文件属性的详述 3.企业案例 /usr 安装第三方软件的目录: 1./ ...

  5. 最长公共子序列问题(LCS) 洛谷 P1439

    题目:P1439 [模板]最长公共子序列 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 关于LCS问题,可以通过离散化转换为LIS问题,于是就可以使用STL二分的方法O(nlogn ...

  6. API测试最佳实践 - 身份验证

    适用等级:高级 1. 概况 身份验证通常被定义为是对某个资源的身份的确认的活动,这里面资源的身份指代的是API的消费者(或者说是调用者).一旦一个用户的身份验证通过了,他将被授权访问那些期待访问的资源 ...

  7. golang vendor

    安装参考 https://blog.csdn.net/huwh_/article/details/77169858 Go 1.5引入了vendor文件夹,其对语言使用,go命令没有任何影响.若某个路径 ...

  8. OSGi系列 - 使用Eclipse查看Bundle源码

    使用Eclipse开发OSGi Bundle时,会发现有很多现成的Bundle可以用.但如何使用这些Bundle呢?除了上网搜索查资料外,阅读这些Bundle的源码也是一个很好的方法. 本文以org. ...

  9. java职业路线图

  10. Mysql资料 Binlog

    目录 一.简介 二.开启binlog及相关参数 开启 相关操作 三.查看binlog日志 使用mysqlbinlog自带查看命令法 mysql加载方式查询 四.恢复数据 五.命令参数 一.简介 MyS ...