1、环境说明

系统环境:

  • 系统环境:centos6.7
  • Hadoop版本:CDH5.5
  • JDK运行版本:1.7.0_67

集群各节点组件分配:

2、准备工作

安装 Hadoop 集群前先做好下面的准备工作,在修改配置文件的时候,建议在一个节点上修改,然后同步到其他节点。因为要同步配置文件和在多个节点启动服务,建议配置 ssh 无密码登陆。

2.1配置hosts

  • CDH 要求使用 IPv4,IPv6 不支持,禁用IPv6方法:
# vim /etc/sysctl.conf
#disable ipv6
net.ipv6.conf.all.disable_ipv6=1
net.ipv6.conf.default.disable_ipv6=1
net.ipv6.conf.lo.disable_ipv6=1
  • 使其生效:
# sysctl -p
  • 最后确认是否已禁用:
# cat /proc/sys/net/ipv6/conf/all/disable_ipv6
1
  • 设置hostname,以bd-ops-test-74为例
hostname bd-ops-test-74
  • 并使其永久生效
# vim /etc/sysconfig/network
修改HOSTNAME=bd-ops-test-74
  • 修改hosts表
在每个节点上都应有一份hosts表,在之后的配置中,对应节点名称使用hostname
# vim /etc/hosts
172.16.57.74 bd-ops-test-74
172.16.57.75 bd-ops-test-75
172.16.57.76 bd-ops-test-76
172.16.57.77 bd-ops-test-77

2.2关闭防火墙以及selinux

# setenforce 0
# vim /etc/sysconfig/selinux #修改SELINUX=disabled

#清空iptables
# iptables -F

2.3时钟同步

搭建时钟同步服务器

这里选择 74 节点为时钟同步服务器,其他节点为客户端同步时间到该节点。安装ntp:

# yum install ntp -y

修改 74 上的配置文件 /etc/ntp.conf

driftfile /var/lib/ntp/drift
restrict default nomodify notrap nopeer noquery
restrict 127.0.0.1
restrict ::1
restrict 172.16.57.0 mask 255.255.255.0 nomodify notrap
server 0.centos.pool.ntp.org iburst
server 1.centos.pool.ntp.org iburst
server 2.centos.ntp.org iburst
server 3.centos.pool.ntp.org iburst
includefile /etc/ntp/crypto/pw
keys /etc/ntp/keys
disable monitor

启动 ntp:

#设置开机启动
# chkconfig ntpd on

# service ntpd start

ntpq用来监视ntpd操作,使用标准的NTP模式6控制消息模式,并与NTP服务器通信。

ntpq -p 查询网络中的NTP服务器,同时显示客户端和每个服务器的关系。

#ntpq -p
     remote           refid      st t when poll reach   delay   offset  jitter
==============================================================================
*dns1.synet.edu. 202.118.1.47     2 u   57   64  377   41.912   -3.877   4.628

客户端的配置

在76和77节点上执行下面操作:

# ntpdate bd-ops-test-74

Ntpd启动的时候通常需要一段时间大概5分钟进行时间同步,所以在ntpd刚刚启动的时候还不能正常提供时钟服务,报错"no server suitable for synchronization found"。启动时候需要等待5分钟。

过一会儿我们就可以看到同步成功了:

#ntpdate bd-ops-test-74
24 Aug 22:32:14 ntpdate[14024]: step time server 172.16.57.74 offset -77.582859 sec

2.4安装JDK

此过程不再赘述,本例中jdk安装目录为/opt/programs/jdk1.7.0_67

2.5设置本地yum源

从官方下载cdh5.5压缩仓库包,传送门:http://archive.cloudera.com/cdh5/repo-as-tarball/5.5.1/cdh5.5.1-centos5.tar.gz

解压后配置本地仓库使用。

3、安装Zookeeper

Zookeeper 至少需要3个节点,并且节点数要求是基数,这里在75、76、77上安装 Zookeeper。

3.1安装

在需要安装的节点上执行:

# yum install zookeeper* -y

3.2修改配置文件

设置 zookeeper 配置 /etc/zookeeper/conf/zoo.cfg

maxClientCnxns=50
tickTime=2000
initLimit=10
syncLimit=5
dataDir=/opt/zookeeper/zkdata
clientPort=2181
dataLogDir=/opt/zookeeper/zkdatalog
server.1=172.16.57.75:2888:3888
server.2=172.16.57.76:2888:3888
server.3=172.16.57.77:2888:3888

指定jdk路径/etc/zookeeper/conf/java.env

export JAVA_HOME=/opt/programs/jdk1.7.0_67/

3.3同步配置文件

将配置文件同步到其他节点:

# scp -r /etc/zookeeper/conf root@bd-ops-test-76:/etc/zookeeper/
# scp -r /etc/zookeeper/conf root@bd-ops-test-77:/etc/zookeeper/

3.4初始化并启动服务

在每个节点上初始化并启动 zookeeper,注意 myid 的值需要和 zoo.cfg 中的编号一致。

在 75 节点运行:

# service zookeeper-server init --myid=1
# service zookeeper-server start

在 76 节点运行:

# service zookeeper-server init --myid=2
# service zookeeper-server start

在 77 节点运行:

# service zookeeper-server init --myid=3
# service zookeeper-server start

3.5测试

通过下面命令测试是否启动成功:

# zookeeper-client -server bd-ops-test-74:2181

4、安装和配置HDFS(HA模式)

根据文章开头的节点规划,

在74,75上安装 hadoop-hdfs-namenode,

# yum install hadoop-hdfs-namenode -y

在74,75,76,77上安装hadoop-hdfs-datanode

# yum install hadoop-hdfs-datanode -y

4.1配置hadoop相关环境变量

创建 /etc/hadoop/conf/hadoop-env.sh,主要指定的是jdk、hadoop等相关安装目录

# cat hadoop-env.sh
export HADOOP_MAPRED_HOME=/usr/lib/hadoop-mapreduce
export HADOOP_HOME=/usr/lib/hadoop
export JAVA_HOME=/opt/programs/jdk1.7.0_67/
export HADOOP_NAMENODE_OPTS="-XX:+UseParallelGC -XX:ParallelGCThreads=8"
export HADOOP_HEAPSIZE=16384
export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HADOOP_HOME/lib/hadoop-lzo.jar

在/etc/hadoop/conf/slaves中指定集群的hostname

# cat slaves
bd-ops-test-74
bd-ops-test-75
bd-ops-test-76
bd-ops-test-77

4.2修改hadoop配置文件

/etc/hadoop/conf/core-site.xml中设置fs.defaultFS属性值,该属性指定NameNode是哪一个节点以及使用的文件系统是file还是hdfs,格式:hdfs://<namenode host>:<namenode port>/,默认的文件系统是file:///

<property>
 <name>fs.defaultFS</name>
 <value>hdfs://bd-ops-test:8020</value>
</property>

/etc/hadoop/conf/hdfs-site.xml中设置dfs.permissions.superusergroup属性,该属性指定hdfs的超级用户,默认为hdfs,你可以修改为hadoop:

    <property>
        <name>dfs.permissions.superusergroup</name>
        <value>hadoop</value>
    </property>

更多的配置信息说明,请参考 Apache Cluster Setup

4.3指定本地文件目录

在hadoop中默认的文件路径以及权限要求如下:

目录                                  所有者     权限      默认路径
hadoop.tmp.dir                      hdfs:hdfs   drwx------  /var/hadoop
dfs.namenode.name.dir               hdfs:hdfs   drwx------  file://${hadoop.tmp.dir}/dfs/name
dfs.datanode.data.dir               hdfs:hdfs   drwx------  file://${hadoop.tmp.dir}/dfs/data
dfs.namenode.checkpoint.dir         hdfs:hdfs   drwx------  file://${hadoop.tmp.dir}/dfs/namesecondary

说明你可以在 hdfs-site.xm l中只配置hadoop.tmp.dir,也可以分别配置上面的路径。这里使用分别配置的方式,hdfs-site.xml中配置如下:

 <property>
        <name>dfs.namenode.name.dir</name>
        <value>file:///opt/hadoop/data/hdfs/nn</value>
    </property>

    <property>
        <name>dfs.datanode.data.dir</name>
        <value>file:///opt/hadoop/data1/hdfs/dn,file:///opt/hadoop/data2/hdfs/dn,file:///opt/hadoop/data3/hdfs/dn</value>
    </property>

NameNode上手动创建 dfs.name.dirdfs.namenode.name.dir 的本地目录:

mkdir -p /opt/hadoop/data/hdfs/nn

DataNode上手动创建 dfs.data.dirdfs.datanode.data.dir 的本地目录:

mkdir -p /opt/hadoop/data{1,2,3}/hdfs/dn

修改上面目录所有者:

chown -R hdfs:hdfs /opt/hadoop/*

hadoop的进程会自动设置 dfs.data.dirdfs.datanode.data.dir,但是 dfs.name.dirdfs.namenode.name.dir 的权限默认为755,需要手动设置为700:

# chmod 700 /opt/hadoop/data/hdfs/nn

注意:DataNode的本地目录可以设置多个(我这里有三个),你可以设置 dfs.datanode.failed.volumes.tolerated 参数的值,表示能够容忍不超过该个数的目录失败。

4.4开启回收站功能

回收站功能默认是关闭的,建议打开。在 /etc/hadoop/conf/core-site.xml 中添加如下两个参数:

  • fs.trash.interval,该参数值为时间间隔,单位为分钟,默认为0,表示回收站功能关闭。该值表示回收站中文件保存多长时间,如果服务端配置了该参数,则忽略客户端的配置;如果服务端关闭了该参数,则检查客户端是否有配置该参数;
  • fs.trash.checkpoint.interval,该参数值为时间间隔,单位为分钟,默认为0。该值表示检查回收站时间间隔,该值要小于fs.trash.interval,该值在服务端配置。如果该值设置为0,则使用 fs.trash.interval 的值。

4.5开启WebHDFS

在NameNode节点上安装:

# yum install hadoop-httpfs -y

然后修改 /etc/hadoop/conf/core-site.xml配置代理用户:

<property>
<name>hadoop.proxyuser.httpfs.hosts</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.httpfs.groups</name>
<value>*</value>
</property>

4.6配置LZO

安装lzo:

# yum install hadoop-lzo* impala-lzo  -y

最后,在 /etc/hadoop/conf/core-site.xml 中添加如下配置:

<property>
  <name>io.compression.codecs</name>
  <value>org.apache.hadoop.io.compress.DefaultCodec,org.apache.hadoop.io.compress.GzipCodec,
org.apache.hadoop.io.compress.BZip2Codec,com.hadoop.compression.lzo.LzoCodec,
com.hadoop.compression.lzo.LzopCodec</value>
</property>
<property>
  <name>io.compression.codec.lzo.class</name>
  <value>com.hadoop.compression.lzo.LzoCodec</value>
</property>

更多关于LZO信息,请参考:Using LZO Compression

4.7配置Snappy

cdh 的 rpm 源中默认已经包含了 snappy ,直接在每个节点安装Snappy:

yum install snappy snappy-devel  -y

然后,在 core-site.xml 中修改io.compression.codecs的值,添加 org.apache.hadoop.io.compress.SnappyCodec

使 snappy 对 hadoop 可用:

ln -sf /usr/lib64/libsnappy.so /usr/lib/hadoop/lib/native/

4.8HA配置

安装服务

在 75、76、77 上安装 hadoop-hdfs-journalnode

yum install hadoop-hdfs-journalnode -y

在 74、75(namenode) 上安装 hadoop-hdfs-zkfc:

yum install hadoop-hdfs-zkfc -y

修改配置文件

修改/etc/hadoop/conf/core-site.xml,做如下修改:

<property>
	<name>fs.defaultFS</name>
	<value>hdfs://bd-ops-test:8020</value>
</property>
<property>
	<name>ha.zookeeper.quorum</name>
	<value>bd-ops-test-75:2181,bd-ops-test-76:2181,bd-ops-test-77:2181</value>
</property>

修改/etc/hadoop/conf/hdfs-site.xml

<property>
        <name>dfs.nameservices</name>
        <value>bd-ops-test</value>
    </property>

    <property>
        <name>dfs.ha.namenodes.bd-ops-test</name>
        <value>bd-ops-test-74,bd-ops-test-75</value>
    </property>

    <property>
        <name>dfs.namenode.rpc-address.bd-ops-test.bd-ops-test-74</name>
        <value>bd-ops-test-74:8020</value>
    </property>

    <property>
        <name>dfs.namenode.rpc-address.bd-ops-test.bd-ops-test-75</name>
        <value>bd-ops-test-75:8020</value>
    </property>

    <property>
        <name>dfs.namenode.http-address.bd-ops-test.bd-ops-test-74</name>
        <value>bd-ops-test-74:50070</value>
    </property>

    <property>
        <name>dfs.namenode.http-address.bd-ops-test.bd-ops-test-75</name>
        <value>bd-ops-test-75:50070</value>
    </property>

    <property>
        <name>dfs.namenode.shared.edits.dir</name>
        <value>qjournal://bd-ops-test-75:8485;bd-ops-test-76:8485;bd-ops-test-77:8485/bd-ops-test</value>
    </property>

    <property>
        <name>dfs.journalnode.edits.dir</name>
        <value>/opt/hadoop/data1/hdfs/jn</value>
    </property>

    <property>
        <name>dfs.client.failover.proxy.provider.bd-ops-test</name>
        <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    </property>

    <property>
        <name>dfs.ha.fencing.methods</name>
        <value>sshfence</value>
    </property>

    <property>
        <name>dfs.ha.fencing.ssh.private-key-files</name>
        <value>/var/lib/hadoop-hdfs/.ssh/id_rsa</value>
    </property>

    <property>
        <name>dfs.ha.automatic-failover.enabled</name>
        <value>true</value>
    </property>

4.9启动HDFS

将74上的配置文件同步到每一个节点:

scp -r /etc/hadoop/conf root@bd-ops-test-75:/etc/hadoop/
scp -r /etc/hadoop/conf root@bd-ops-test-76:/etc/hadoop/
scp -r /etc/hadoop/conf root@bd-ops-test-77:/etc/hadoop/

在74节点格式化NameNode:

sudo -u hdfs hadoop namenode -format
 

启动journalnode

启动75、76、77上的 hadoop-hdfs-journalnode 服务

service hadoop-hdfs-journalnode start

初始化共享存储

在namenode上初始化共享存储,如果没有格式化,则先格式化:

hdfs namenode -initializeSharedEdits

启动第一个namenode(74)

service hadoop-hdfs-namenode start

同步 Standby NameNode

75作为 Standby NameNode,运行

sudo -u hdfs hadoop namenode -bootstrapStandby

然后,启动 Standby NameNode:

service hadoop-hdfs-namenode start

配置自动切换

在两个NameNode上,即74和75,安装hadoop-hdfs-zkfc

yum install hadoop-hdfs-zkfc -y

在任意一个NameNode上下面命令,其会创建一个znode用于自动故障转移

hdfs zkfc -formatZK

然后再两个 NameNode 节点上启动zkfc:

service hadoop-hdfs-zkfc start

启动datanode

在datanode节点运行:

service hadoop-hdfs-datanode start

如果安装了HttpFS,则启动 HttpFS 服务:

service hadoop-httpfs start

4.10测试

使用 curl 运行下面命令,可以测试 webhdfs 并查看执行结果:

# curl "http://localhost:14000/webhdfs/v1?op=gethomedirectory&user.name=hdfs"
{"Path":"\/user\/hdfs"}

更多的 API,请参考 WebHDFS REST API

分别访问 http://bd-ops-test-74:50070/ 和 http://bd-ops-test-75:50070/ 查看谁是 active namenode,谁是 standyby namenode。

查看某Namenode的状态:

#查看nn1状态
$ sudo -u hdfs hdfs haadmin -getServiceState bd-ops-test-74
active

#查看nn2状态
$ sudo -u hdfs hdfs haadmin -getServiceState bd-ops-test-75
standby

执行手动切换:

sudo -u hdfs hdfs haadmin -failover bd-ops-test-74 bd-ops-test-75

再次访问 http://bd-ops-test-74:50070/ 和 http://bd-ops-test-75:50070/ 查看谁是 active namenode,谁是 standyby namenode。

5、安装和配置YARN(HA模式)

根据文章开头的节点规划,74、75 为resourcemanager节点,74,、75、76、77 为nodemanager节点,historyserver 装在 76 节点上。

5.1 安装服务

在74,75安装:

yum install hadoop-yarn hadoop-yarn-resourcemanager -y

在74-77安装:

yum install hadoop-yarn hadoop-yarn-nodemanager hadoop-mapreduce -y

在76安装:

yum install hadoop-mapreduce-historyserver hadoop-yarn-proxyserver -y

5.2修改配置文件

要想使用YARN,需要在 /etc/hadoop/conf/mapred-site.xml 中做如下配置:

<property>
    <name>mapreduce.framework.name</name>
    <value>yarn</value>
</property>

修改/etc/hadoop/conf/yarn-site.xml,配置resourcemanager的节点名称、一些服务的端口号以及ha的配置:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
    <!-- RM Manager Configd -->
    <property>
        <name>yarn.resourcemanager.connect.retry-interval.ms</name>
        <value>2000</value>
    </property>

    <property>
        <name>yarn.resourcemanager.ha.enabled</name>
        <value>true</value>
    </property>

    <property>
        <name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
        <value>true</value>
    </property>

    <property>
        <name>yarn.resourcemanager.ha.automatic-failover.embedded</name>
        <value>true</value>
    </property>

    <property>
        <name>yarn.resourcemanager.cluster-id</name>
        <value>yarn-rm-cluster</value>
    </property>

    <property>
        <name>yarn.resourcemanager.ha.rm-ids</name>
        <value>bd-ops-test-74,bd-ops-test-75</value>
    </property>

    <property>
        <name>yarn.resourcemanager.ha.id</name>
        <value>bd-ops-test-74</value>
    </property>

    <!--
             <property>
        <name>yarn.resourcemanager.scheduler.class</name>
        <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
    </property>
    -->

    <!--scheduler capacity -->
    <property>
        <name>yarn.resourcemanager.scheduler.class</name>
        <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
    </property>

    <property>
        <name>yarn.resourcemanager.recovery.enabled</name>
        <value>true</value>
    </property>

    <property>
        <name>yarn.resourcemanager.store.class</name>
        <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
    </property>

    <property>
        <name>yarn.resourcemanager.zk-address</name>
        <value>bd-ops-test-75:2181,bd-ops-test-76:2181,bd-ops-test-77:2181</value>
    </property>

    <property>
        <name>yarn.resourcemanager.zk.state-store.address</name>
        <value>bd-ops-test-75:2181,bd-ops-test-76:2181,bd-ops-test-77:2181</value>
    </property>

    <property>
        <name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name>
        <value>5000</value>
    </property>

    <!-- RM1 Configs-->
    <property>
        <name>yarn.resourcemanager.address.bd-ops-test-74</name>
        <value>bd-ops-test-74:23140</value>
    </property>

    <property>
        <name>yarn.resourcemanager.scheduler.address.bd-ops-test-74</name>
        <value>bd-ops-test-74:23130</value>
    </property>

    <property>
        <name>yarn.resourcemanager.webapp.https.address.bd-ops-test-74</name>
        <value>bd-ops-test-74:23189</value>
    </property>

    <property>
        <name>yarn.resourcemanager.webapp.address.bd-ops-test-74</name>
        <value>bd-ops-test-74:23188</value>
    </property>

    <property>
        <name>yarn.resourcemanager.resource-tracker.address.bd-ops-test-74</name>
        <value>bd-ops-test-74:23125</value>
    </property>

    <property>
        <name>yarn.resourcemanager.admin.address.bd-ops-test-74</name>
        <value>bd-ops-test-74:23141</value>
    </property>

    <!-- RM2 Configs -->
    <property>
        <name>yarn.resourcemanager.address.bd-ops-test-75</name>
        <value>bd-ops-test-75:23140</value>
    </property>

    <property>
        <name>yarn.resourcemanager.scheduler.address.bd-ops-test-75</name>
        <value>bd-ops-test-75:23130</value>
    </property>

    <property>
        <name>yarn.resourcemanager.webapp.https.address.bd-ops-test-75</name>
        <value>bd-ops-test-75:23189</value>
    </property>

    <property>
        <name>yarn.resourcemanager.webapp.address.bd-ops-test-75</name>
        <value>bd-ops-test-75:23188</value>
    </property>

    <property>
        <name>yarn.resourcemanager.resource-tracker.address.bd-ops-test-75</name>
        <value>bd-ops-test-75:23125</value>
    </property>

    <property>
        <name>yarn.resourcemanager.admin.address.bd-ops-test-75</name>
        <value>bd-ops-test-75:23141</value>
    </property>

    <!-- Node Manager Configs -->
    <property>
        <name>yarn.nodemanager.resource.memory-mb</name>
        <value>61440</value>
    </property>

    <property>
        <name>yarn.nodemanager.resource.cpu-vcores</name>
        <value>24</value>
    </property>

    <property>
        <name>yarn.log-aggregation.retain-seconds</name>
        <value>86400</value>
    </property>

    <property>
        <name>yarn.log-aggregation.retain-check-interval-seconds</name>
        <value>8640</value>
    </property>

    <property>
        <name>yarn.nodemanager.localizer.address</name>
        <value>0.0.0.0:23344</value>
    </property>

    <property>
        <name>yarn.nodemanager.webapp.address</name>
        <value>0.0.0.0:23999</value>
    </property>

    <property>
        <name>yarn.web-proxy.address</name>
        <value>0.0.0.0:8080</value>
    </property>

    <property>
        <name>mapreduce.shuffle.port</name>
        <value>23080</value>
    </property>

    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>

    <property>
        <name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name>
        <value>org.apache.hadoop.mapred.ShuffleHandler</value>
    </property>

    <property>
        <name>yarn.log-aggregation-enable</name>
        <value>true</value>
    </property>

    <property>
        <name>yarn.nodemanager.local-dirs</name>
        <value>file:///opt/hadoop/data1/yarn/dn,file:///opt/hadoop/data2/yarn/dn,file:///opt/hadoop/data3/yarn/dn</value>
    </property>

    <property>
        <name>yarn.nodemanager.log-dirs</name>
        <value>file:///opt/hadoop/data1/yarn/logs,file:///opt/hadoop/data2/yarn/logs,file:///opt/hadoop/data3/yarn/logs</value>
    </property>

    <!--
             <property>
        <name>yarn.nodemanager.disk-health-checker.min-healthy-disks</name>
        <value>0</value>
    </property>

    <property>
        <name>yarn.nodemanager.disk-health-checker.enable</name>
        <value>false</value>
    </property>
    -->

    <property>
        <name>yarn.nodemanager.remote-app-log-dir</name>
        <value>hdfs://bd-ops-test:8020/yarn/apps</value>
    </property>

    <property>
        <name>yarn.application.classpath</name>
        <value>
                $HADOOP_CONF_DIR,
                $HADOOP_COMMON_HOME/*,$HADOOP_COMMON_HOME/lib/*,
                $HADOOP_HDFS_HOME/*,$HADOOP_HDFS_HOME/lib/*,
                $HADOOP_MAPRED_HOME/*,$HADOOP_MAPRED_HOME/lib/*,
                $HADOOP_YARN_HOME/*,$HADOOP_YARN_HOME/lib/*
        </value>
    </property>

    <property>
        <name>yarn.web-proxy.address</name>
        <value>172.16.57.76:41202</value>
    </property>
    <property>
         <name>yarn.log.server.url</name>
         <value>http://bd-ops-test-76:19888/jobhistory/logs</value>
    </property>
</configuration>

/etc/hadoop/conf/mapred-site.xml 中配置 MapReduce History Server:

    <property>
        <name>mapreduce.jobhistory.address</name>
        <value>bd-ops-test-76:10020</value>
    </property>

    <property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>bd-ops-test-76:19888</value>
    </property>

此外,确保 mapred、yarn 用户能够使用代理,在 /etc/hadoop/conf/core-site.xml 中添加如下参数:

<property>
        <name>hadoop.proxyuser.mapred.groups</name>
        <value>*</value>
    </property>

    <property>
        <name>hadoop.proxyuser.mapred.hosts</name>
        <value>*</value>
    </property>

    <property>
        <name>hadoop.proxyuser.yarn.groups</name>
        <value>*</value>
    </property>

    <property>
        <name>hadoop.proxyuser.yarn.hosts</name>
        <value>*</value>
    </property>

配置 Staging 目录:

<property>
    <name>yarn.app.mapreduce.am.staging-dir</name>
    <value>/user</value>
</property>

并在 hdfs 上创建相应的目录:

# sudo -u hdfs hadoop fs -mkdir -p /user
# sudo -u hdfs hadoop fs -chmod 777 /user
# sudo -u hdfs hadoop fs -mkdir -p /user/history
# sudo -u hdfs hadoop fs -chmod -R 1777 /user/history
# sudo -u hdfs hadoop fs -chown mapred:hadoop /user/history

5.3创建本地文件目录

创建 yarn.nodemanager.local-dirsyarn.nodemanager.log-dirs 参数对应的目录:

# mkdir -p mkdir /opt/hadoop/data{1..3}/yarn/{dn,logs}
# chown -R yarn:yarn /opt/hadoop/data{1..3}/yarn

5.4同步配置文件

同步配置文件到整个集群。

5.5启动服务

在每个节点启动 YARN :

for x in `ls /etc/init.d/|grep hadoop-yarn` ; do service $x start ; done

在 76节点启动 mapred-historyserver :

 /etc/init.d/hadoop-mapreduce-historyserver start

在 hdfs 运行之后,创建 /tmp 临时目录,并设置权限为 1777

sudo -u hdfs hadoop fs -mkdir /tmp
 sudo -u hdfs hadoop fs -chmod -R 1777 /tmp

5.6测试

通过http://bd-ops-test-74:23188/cluster/cluster, http:// bd-ops-test-75:23188/cluster/cluster , 可以查看谁是actice谁是standby,通过 http://cdh1:19888/ 可以访问 JobHistory 的管理页面。

查看ResourceManager状态:

yarn rmadmin -getServiceState bd-ops-test-73

执行手动切换:

yarn rmadmin -transitionToActive --forcemanual bd-ops-test-74

yum安装CDH5.5 Hadoop集群的更多相关文章

  1. 安装和配置hadoop集群步骤

    hadoop集群的安装步骤和配置 hadoop是由java语言编写的,首先我们肯定要在电脑中安装jdk,配置好jdk的环境,接下来就是安装hadoop集群的步骤了,在安装之前需要创建hadoop用户组 ...

  2. 安装CDH5.11.2集群

    master  192.168.1.30 saver1  192.168.1.40 saver2  192.168.1.50 首先,时间同步 然后,ssh互通 接下来开始: 1.安装MySQL5.6. ...

  3. 虚拟机群安装多个hadoop集群时遇到的问题

    背景,原来在我的虚拟机集群(nn1,nn2)中安装的是cdh23502,后来做升级实验,升到cdh26550,因为生产中使用的环境是cdh23502,所以再次切换回去. 切换的过程中,遇到一些问题,特 ...

  4. Hadoop之Hive 安装_(hadoop 集群)

    Hive mysql的metastore安装准备(***掌握***) 在nameNode1机子上实践: 把hive-0.12.0.tar.gz解压到/itcast/ # tar -zxvf hive- ...

  5. SPARK安装二:HADOOP集群部署

    一.hadoop下载 使用2.7.6版本,因为公司生产环境是这个版本 cd /opt wget http://mirrors.hust.edu.cn/apache/hadoop/common/hado ...

  6. Hadoop集群搭建-03编译安装hadoop

    Hadoop集群搭建-05安装配置YARN Hadoop集群搭建-04安装配置HDFS  Hadoop集群搭建-03编译安装hadoop Hadoop集群搭建-02安装配置Zookeeper Hado ...

  7. Hadoop2.2.0安装配置手册!完全分布式Hadoop集群搭建过程~(心血之作啊~~)

    http://blog.csdn.net/licongcong_0224/article/details/12972889 历时一周多,终于搭建好最新版本hadoop2.2集群,期间遇到各种问题,作为 ...

  8. Hadoop集群搭建-05安装配置YARN

    Hadoop集群搭建-04安装配置HDFS  Hadoop集群搭建-03编译安装hadoop Hadoop集群搭建-02安装配置Zookeeper Hadoop集群搭建-01前期准备 先保证集群5台虚 ...

  9. Hadoop集群搭建-04安装配置HDFS

    Hadoop集群搭建-05安装配置YARN Hadoop集群搭建-04安装配置HDFS  Hadoop集群搭建-03编译安装hadoop Hadoop集群搭建-02安装配置Zookeeper Hado ...

随机推荐

  1. jquery中如何以逗号分割字符串_百度知道

    body{ font-family: "Microsoft YaHei UI","Microsoft YaHei",SimSun,"Segoe UI& ...

  2. [Cocos2d-x]Lua 资源热更新

    什么是热更新 所谓的热更新,指的是客户端的更新. 大致的流程是,客户端在启动后访问更新的URL接口,根据更新接口的反馈,下载更新资源,然后使用新的资源启动客户端,或者直接使用新资源不重启客户端. 热更 ...

  3. LED调光,PFM即pulse frequence modulation

    PWM不是唯一的调制方式,可以PWM,也可以PFM,也可以混合调制. PWM即pulse width modulation的缩写,脉冲宽度调制,保持开关周期不变,调节开关导通时间. PFM即pulse ...

  4. javascript alert,confirm,prompt弹框用法

    1. alert是弹出警告框,在文本里面加入\n就可以换行. 2. confirm弹出确认框,会返回布尔值,通过这个值可以判断点击时确认还是取消.true表示点击了确认,false表示点击了取消. 3 ...

  5. D. PolandBall and Polygon BIT + 欧拉公式

    http://codeforces.com/contest/755/problem/D // 我也觉得非平面图不能用欧拉公式,但是也能过,不知道为什么.求大佬留言. 这题其实就是平面图,因为它有很多个 ...

  6. laravel5 html引用问题

    1. Composer 安装 编辑 composer.json 文件, require 节点下增加: "illuminate/html": "~5.0" 然后 ...

  7. HDU 3264 Open-air shopping malls ——(二分+圆交)

    纯粹是为了改进牛吃草里的两圆交模板= =. 代码如下: #include <stdio.h> #include <algorithm> #include <string. ...

  8. discuz开发学习

    2014年3月24日 10:36:10 遇到一个问题,discuz 缓存的样式,没有自动生成.后来去后台 进行操作才有效. 解决了之前的遇到的 首页没有套用样式的问题. 现在的问题是 模版的扩展图片 ...

  9. selenium Chromediver

    Here we use wget to fetch the version number of the latest release, then plug the version into anoth ...

  10. jquery textarea输入字符字数提示

    效果: html代码: <textarea id="assayInfo" name="assayInfo" rows="3" cols ...