Coursera台大机器学习基础课程学习笔记 -- 1

最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正。

一 机器学习是什么?

感觉和 Tom M. Mitchell的定义几乎一致,

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

简而言之,就是我们想要机器在某些方面有提高(如搜索排名的质量,即NDCG提高),就给机器一些数据(用户的点击数据等各种)然后让机器获得某些经验(Learning to rank的一种模型,也就是数学公式)。这里有点需要强调,那就是提高指标,必须要有某种指标可以量化这种提高,这点还是很关键的,工业界做机器学习,首先关注data,其次就是有无成型的measurement,可以使Precision/Recall,也可以是NDCG等。

二 什么时候可以用机器学习?

其实就三要素:

  1. 有规律可以学习;
  2. 编程很难做到;
  3. 有能够学习到规律的数据;

编程很难做到可以有多种,大部分原因是系统太复杂,很难用Rule-based的东西去解决,例如搜索排名,现在影响排名的因素有超多几百种,不可能去想出这些因素的规则,因此,这时候用机器学习就是恰到好处。特别是移动互联网的今天,用户更容易接触互联网,产生的数据越来越多,那么要找到某些不容易实现的规律,用机器学习就是很好的了,这也是为啥机器学习这么火,其实我学机器学习不仅仅是一种投资(肯定它未来的发展前途),我想做的事情还有一点,就是通过它更深刻的理解人脑的学习过程,提高自己的学习效率和思维能力。

三 具体如何用机器学习?

输入是两个:1 data;2 假设集合。Data如何使用?通过提取出feature vector来使用,也就是那个training examples,假设集合是用来选取最终f的。也就是说,输出就是f(或近似f)。

四 第一个机器学习算法:PLA(Perceptron Learning Algorithm)

课程讲述这个算法的总体思路如下(典型的提出问题,分析问题以及解决问题):

  1. 通过信用卡问题引入PLA;
  2. 对问题用数学抽象,并得到目标函数;
  3. 详细解释PLA迭代(学习)过程;
  4. 证明PLA学习的过程可以收敛并会得到最优解;
  5. 分析PLA优缺点,并提出克服缺点的一些方法;

这个算法本质上是线性分类器,针对给定的feature vector给出Yes 或者 No的回答

下面是用这个算法去解决信用卡问题的数学抽象:

这里的思想在于朴素的把从用户信息抽出来的一些feature(年龄等)量化并组成vector,然后乘以一个权重向量,并设定一个阈值,大于这个阈值就表示好,小于表示不好,很明显这个式子的未知变量有两个(实际只有一个):

  1. 权重向量 wi, 1<=i<=d;
  2. 阈值,下面设为0

做一点小小的变形使得式子更加紧凑,

还有就是从这个模型可以知道,regression model也可以解决classification问题,转化的思想。下面是这个算法的核心,定义了学习目标之后,如何学习?这里的学习是,如何得到最终的直线去区分data?

这个算法的精髓之处在于如何做到"做错能改",其循环是不断遍历feature vector,找到错误的点(Yn和当前Wt*Xn不符合),然后校正Wt,那么为什么要这样校正?因为这样可以保证Wt越来越靠近perfect直线Wf(ps.暂时没想到正向思维是如何得到这个式子的)课程像大多数课本一样,用逆向思维给予介绍,就是在给定这样能够做的情况下去证明,即证明为什么这样做可以不断接近目标,以及最终一定会停止?

下面道出了PLA终止的条件:

这个是比较容易想到的,如果不能用直线去区分data(线性不可分),肯定是解决不了的,所以必须要满足线性可分,其实问题的关键在于如何方便的知道某些数据是否线性可分?这个在课程中目前没有涉及,一种简单的解决方法是画出来,直观的去看,这个我觉得不是好方法。

这两页PPT比较复杂,其实就是在利用条件证明,下面重新组织下给出思路,因为Latex用中文不太爽,就用英文了:

五 PLA的优缺点

为了应对Noisy,我们不可能得到完美的直线,那么怎么衡量当前得到的直线能够满足要求呢?凭直觉,我们知道如果当前直线犯错越少越好(对所有data),于是有了下面的改进算法,Pocket PLA,本质上就是在改错的时候多做一步 -- 判断当前改正犯的错是否比之前更小,也就是贪心选择

上了一周台大的这个课程感觉老师还是很负责任,特别是循循善诱的教学方式真正是站在学生的角度考虑问题,更重要的是,我很欣赏课程的脉络,其由几个关键问题引出整套课程,这和《如何阅读一本书》里面带着问题阅读很像,其实学习也是如此,这点必须赞一下,也做个小广告,目前大家都在推荐Ng教授的课程,我觉得这个课程也值得推荐。

参考资料:

Coursera台大机器学习基石

注:除了证明,其他授课ppt都来源于课程

 
 
 
 

Coursera台大机器学习基础课程1的更多相关文章

  1. Coursera台大机器学习基础课程学习笔记1 -- 机器学习定义及PLA算法

    最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一机器学习是什么? 感觉和 Tom M. Mitchell的定义几乎一致, A computer program ...

  2. Coursera台大机器学习基础课程学习笔记2 -- 机器学习的分类

    总体思路: 各种类型的机器学习分类 按照输出空间类型分Y 按照数据标记类型分yn 按照不同目标函数类型分f 按照不同的输入空间类型分X 按照输出空间类型Y,可以分为二元分类,多元分类,回归分析以及结构 ...

  3. Coursera台大机器学习技法课程笔记01-linear hard SVM

    极其淡腾的一学期终于过去了,暑假打算学下台大的这门机器学习技法. 第一课是对SVM的介绍,虽然之前也学过,但听了一次感觉还是很有收获的.这位博主总结了个大概,具体细节还是 要听课:http://www ...

  4. Coursera台大机器学习技法课程笔记14-Radial Basis Function Network

    将Radial Basis Function与Network相结合.实际上衡量两个点的相似性:距离越近,值越大. 将神经元换为与距离有关的函数,就是RBF Network: 可以用kernel和RBF ...

  5. Coursera台大机器学习技法课程笔记03-Kernel Support Vector Machine

    这一节讲的是核化的SVM,Andrew Ng的那篇讲义也讲过,讲的也不错. 首先讲的是kernel trick,为了简化将低维特征映射高维特征后的计算,使用了核技巧.讲义中还讲了核函数的判定,即什么样 ...

  6. Coursera台大机器学习技法课程笔记11-Gradient Boosted Decision Tree

    将Adaboost和decision tree相结合,需要注意的地主是,训练时adaboost需要改变资料的权重,如何将有权重的资 料和decision tree相结合呢?方法很类似于前面讲过的bag ...

  7. Coursera台大机器学习技法课程笔记10-Random forest

    随机森林就是要将这我们之前学的两个算法进行结合:bagging能减少variance(通过g们投票),而decision tree的variance很大,资料不同,生成的树也不同. 为了得到不同的g, ...

  8. Coursera台大机器学习技法课程笔记04-Soft-Margin Support Vector Machine

    之前的SVM非常的hard,要求每个点都要被正确的划分,这就有可能overfit,为此引入了Soft SVM,即允许存在被错分的点,将犯的错放在目 标函数中进行优化,非常类似于正则化. 将Soft S ...

  9. Coursera台大机器学习技法课程笔记02-Dual Support Vector Machine

    这节课讲的是SVM的对偶问题,比较精彩的部分:为何要使用拉格朗日乘子以及如何进行对偶变换. 参考:http://www.cnblogs.com/bourneli/p/4199990.html http ...

随机推荐

  1. Android(Lollipop/5.0) Material Design(六) 自定义动画

    官网地址:https://developer.android.com/intl/zh-tw/training/material/animations.html 动画在Material设计中,为用户与a ...

  2. oracle_彻底删除oracle

    例如ORACLE安装路径为:C:\ORACLE 实现方法: 1. 开始->设置->控制面板->管理工具->服务 停止所有Oracle服务. 2. 开始->程序->O ...

  3. XCL-Charts圈图

    我不知道是不是叫图,无论如何,所以叫它. 图形是今天我Circliful这个jQuery 插件上看到的. 认为非常好看. 就想把它实现出来,由于之前画过环形图.且我如今的图表基类基本已成型,所以非常快 ...

  4. 针对不同手机系统的LBS地图定位解决方案

    原文:针对不同手机系统的LBS地图定位解决方案 摘要: 针对目前的三种手机系统:Android安卓.S60塞班.IOS苹果,做出的三种不同的手机地图应用解决方案. 查阅了多数地图API对手机的支持情况 ...

  5. 【动态规划】leetcode - Maximal Square

    称号: Maximal Square Given a 2D binary matrix filled with 0's and 1's, find the largest square contain ...

  6. ArcEngine下纵断面图的绘制

    我是採用Dev控件中的画图控件来绘制的纵断面图,以下主要来介绍下输电线路选址以及纵断面图的实时绘制的实现流程. 一.关于输电线路的选址,首先要准备好基础地理数据,包含选线区的DOM,DEM,DLG以及 ...

  7. Ejb in action(七)——message与JMS

    我们扩大MDBs学前,我们需要理解message(新闻)与JMS(Java Message Service)的概念. 我们在Java EE中谈论消息,实际上就是意味着实现一个松耦合的过程.系统组件之间 ...

  8. Windows系统服务的编写。

    实验资源下载地址:点击打开链接 只是不知道能不能从服务向桌面进程传递消息,,就像两个桌面进程之间用Sendmessage似的..希望有知道的大神可以指点一下..不胜感激.. 因为微软在Vista之后, ...

  9. IT见解

    IT见解 北京海淀区  2014-10-18   张俊浩 *域名的市值在走低,因其功能被新浪.腾讯微博.微信大V这种账号所代替 *小米将自己定位为互联网公司,而不是手机公司 *手机不远的未来会成为公共 ...

  10. CSS3 选择器读解

    文章资料来自于W3Cfuns CSS3.0 四个基本的结构性伪类选择器:root 此选择器将绑定到页面的根元素中,所谓根元素,是指文档树中最顶层的元素,也就是<html>部 分. < ...