Problem Description

Lele now is thinking about a simple function f(x).
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.

Input

The problem contains mutiple test cases.Please process to the end of file.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.

Output

For each case, output f(k) % m in one line.

Sample Input

10 9999
1 1 1 1 1 1 1 1 1 1
20 500
1 0 1 0 1 0 1 0 1 0

Sample Output

45
104

Author

linle

Source

2007省赛集训队练习赛(6)_linle专场

Recommend

lcy

矩阵乘法

如图所示,可以将递推式写成矩阵形式

类似于将斐波那契数列写成矩阵形式

因为数据量很大,需要用到矩阵快速幂

矩阵快速幂见这篇博客

http://www.cnblogs.com/yan-boy/archive/2012/11/29/2795294.html

需要注意的一个小细节是,在进行乘法(不是矩阵乘法)运算时,注意要模上一个数,防止溢出(因为这个WA了好几发)

代码:

#include<bits/stdc++.h>
using namespace std;
struct node
{
int m[10][10];
node(){
memset(m,0,sizeof(m));
// for(int i=0;i<10;i++){
// for(int j=0;j<10;j++)
// m[i][j]=0;
// }
}
};
int mod;
node multi(node &a,node &b)
{
node tmp;
for(int i=0;i<10;i++){
for(int j=0;j<10;j++){
int sum=0;
for(int k=0;k<10;k++){
sum+=(a.m[i][k]%mod)*(b.m[k][j]%mod);
}
tmp.m[i][j]=sum;
}
}
return tmp;
}
void e_mat(node &a)
{
for(int i=0;i<10;i++){
a.m[i][i]=1;
}
}
node quick_mul(node &a,int n)
{
node tmp=a;
//e_mat(tmp);
node res;
e_mat(res);
if(n&1){
res=a;
}
n=n>>1;
while(n!=0){
tmp=multi(tmp,tmp);
if(n&1){
res=multi(res,tmp);
}
n=n>>1;
}
return res;
}
void print(node &a)
{
cout<<"---------------------------"<<endl;
for(int i=0;i<10;i++){
cout<<i<<"ÐÐ"<<"\t";
for(int j=0;j<10;j++){
cout<<a.m[i][j]<<"\t";
}
cout<<endl;
}
cout<<"---------------------------"<<endl;
}
int main()
{
//freopen("data.in","r",stdin);
int n; int ai[11];
node x;
for(int i=0;i<10;i++){
x.m[i][0]=9-i;
}
while(~scanf("%d%d",&n,&mod)){
for(int i=0;i<10;i++){
scanf("%d",ai+i);
}
if(n<10){
printf("%d\n",n);
continue;
}
node a;
//print(a);
for(int i=0;i<10;i++){
a.m[0][i]=ai[i];
}
//print(a);
for(int i=1;i<10;i++){
a.m[i][i-1]=1;
}
//print(a);
node res=quick_mul(a,n-9);
//print(res);
//print(x);
res=multi(res,x);
//print(res);
printf("%d\n",(res.m[0][0])%mod);
}
}

HDU-1757--A Simple Math Problem(矩阵乘法)的更多相关文章

  1. HDU 1757 A Simple Math Problem (矩阵快速幂)

    题目 A Simple Math Problem 解析 矩阵快速幂模板题 构造矩阵 \[\begin{bmatrix}a_0&a_1&a_2&a_3&a_4&a ...

  2. HDU 1757 A Simple Math Problem(矩阵)

    A Simple Math Problem [题目链接]A Simple Math Problem [题目类型]矩阵快速幂 &题解: 这是一个模板题,也算是入门了吧. 推荐一个博客:点这里 跟 ...

  3. HDU 1757 A Simple Math Problem 【矩阵经典7 构造矩阵递推式】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1757 A Simple Math Problem Time Limit: 3000/1000 MS (J ...

  4. hdu 1757 A Simple Math Problem (乘法矩阵)

    A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  5. HDU 1757 A Simple Math Problem (矩阵乘法)

    A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  6. HDU 1757 A Simple Math Problem(矩阵高速幂)

    题目地址:HDU 1757 最终会构造矩阵了.事实上也不难,仅仅怪自己笨..= =! f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + -- + a9 ...

  7. HDU 1757 A Simple Math Problem(矩阵快速幂)

    题目链接 题意 :给你m和k, 让你求f(k)%m.如果k<10,f(k) = k,否则 f(k) = a0 * f(k-1) + a1 * f(k-2) + a2 * f(k-3) + …… ...

  8. hdu 1757 A Simple Math Problem (矩阵快速幂,简单)

    题目 也是和LightOJ 1096 和LightOJ 1065 差不多的简单题目. #include<stdio.h> #include<string.h> #include ...

  9. hdu 1757 A Simple Math Problem(矩阵快速幂乘法)

    Problem Description Lele now is thinking about a simple function f(x). If x < f(x) = x. If x > ...

  10. hdu 1757 A Simple Math Problem (矩阵快速幂)

    Description Lele now is thinking about a simple function f(x). If x < 10 f(x) = x. If x >= 10 ...

随机推荐

  1. List中函数用法 First,FirstOrDefault,Single,SingleOrDefault的区别

    操作符 如果源序列是空的 源序列只包含一个元素 源序列包含多个元素 First 抛异常 返回该元素 返回第一个元素 FirstOrDefault 返回default(TSource) 返回该元素 返回 ...

  2. 将WebApi Host到控制台和IIS

    近期学习WebApi,初步感想是用起来很容易上手,概念上也很好理解,唯一不爽的地方就在于如果在Visual Studio环境里建立Webapi程序,它会自动给创建很多文件夹和文件,其中很多都是用不到的 ...

  3. java.lang.IllegalAccessError: tried to access method com.google.common.base.Stopwatch.<init>()V from 解决

    在用spark的yarn-cluster模式跑fpgrowth进行频繁项集挖掘的时候,报如下错误: ERROR yarn.ApplicationMaster: User class threw exc ...

  4. USACO 3.4 American Heritage

    American Heritage Farmer John takes the heritage of his cows very seriously. He is not, however, a t ...

  5. List去重

    因为用到list,要去除重复数据,尝试了几种方法.记录于此... 测试数据: List<string> li1 = new List<string> { "8&quo ...

  6. [UWP小白日记-15]在UWP手机端实时限制Textbox的输入

    说实话重来没想到验证输入是如此的苦逼的一件事情.     网上好多验证都是在输入完成后再验证,我的想法是在输入的时候就限制输入,这样我就不用再写代码来验证了 应为是手机端,所以不用判断其他非法字符,直 ...

  7. IntelliJ IDEA中类似Eclipse自动补全变量名称和属性名称的快捷键

    IntelliJ IDEA 默认快捷键模式下 自动补全变量名称 : Ctrl + Alt + v 自动补全属性名称 : Ctrl + Alt + f

  8. MIT线性代数课程 总结与理解-第一部分

    概述 个人认为线性代数从三个角度,或者说三个工具来阐述了线性关系,分别是: 向量 矩阵 空间 这三个工具有各自的一套方法,而彼此之间又存在这密切的联系,通过这些抽象出来的工具可以用来干一些实际的活,最 ...

  9. TypeScript 学习四 面向对象的特性,泛型,接口,模块,类型定义文件*.d.ts

    1,面向对象的特性一:类,继承,见上一篇博客: 2,面向对象的特性二: 泛型(generic):参数化的类型,一般用来限制集合的内容:指定只能放某个类型的元素 如下图中的尖括号中的Person,就代表 ...

  10. Ubuntu 14.04—无法修正错误,因为您要求某些软件包保持现状,就是它们破坏了软件包间的依赖关系 解决办法

    在Ubuntu中使用sudo apt-get install安装是有时候会出现: 无法修正错误,因为您要求某些软件包保持现状,就是它们破坏了软件包间的依赖关系   解决办法 这样的错误,这是因为更新源 ...