[bzoj3196][Tyvj 1730][二逼平衡树] (线段树套treap)
Description
您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:
1.查询k在区间内的排名
2.查询区间内排名为k的值
3.修改某一位值上的数值
4.查询k在区间内的前驱(前驱定义为小于x,且最大的数)
5.查询k在区间内的后继(后继定义为大于x,且最小的数)
Input
第一行两个数 n,m 表示长度为n的有序序列和m个操作
第二行有n个数,表示有序序列
下面有m行,opt表示操作标号
若opt=1 则为操作1,之后有三个数l,r,k 表示查询k在区间[l,r]的排名
若opt=2 则为操作2,之后有三个数l,r,k 表示查询区间[l,r]内排名为k的数
若opt=3 则为操作3,之后有两个数pos,k 表示将pos位置的数修改为k
若opt=4 则为操作4,之后有三个数l,r,k 表示查询区间[l,r]内k的前驱
若opt=5 则为操作5,之后有三个数l,r,k 表示查询区间[l,r]内k的后继
Output
对于操作1,2,4,5各输出一行,表示查询结果
Sample Input
Sample Output
HINT
1.n和m的数据范围:n,m<=50000
2.序列中每个数的数据范围:[0,1e8]
Solution
#include <stdio.h>
#include <stdlib.h>
#define N 50010
#define inf 0x7fffffff
#define opp 0x80000000
#define mid ((x>>1)+(y>>1)+(x&y&1))
#define dmax(x,y) ((x)>(y)?(x):(y))
#define dmin(x,y) ((x)<(y)?(x):(y))
#define RG register
#define inline __inline__ __attribute__((always_inline)) inline int Rin(){
RG int x=,c=getchar(),f=;
for(;c<||c>;c=getchar())
if(!(c^))f=-;
for(;c>&&c<;c=getchar())
x=(x<<)+(x<<)+c-;
return x*f;
} int n,m,a[N]; namespace Seg{
struct Treap{
struct Nt{
Nt*ch[];
int s,w,v,r; Nt(RG int v,RG Nt*_) : v(v),r(rand()) {
s=w=;
ch[]=ch[]=_;
} inline void maintain(){
s=w+ch[]->s+ch[]->s;
}
}*root,*null; Treap(){
null=new Nt(,0x0);
null->s=null->w=;
null->r=inf;
null->ch[]=null->ch[]=null;
root=null;
} void rotate(RG Nt*&o,RG int d){
Nt*k=o->ch[^d];
o->ch[^d]=k->ch[d];
k->ch[d]=o;
o->maintain();
k->maintain();
o=k;
} void insert(RG Nt*&o,RG int v){
if(o==null){
o=new Nt(v,null);
return;
}
o->s++;
if(v==o->v)
o->w++;
else{
RG int d=v > o->v;
insert(o->ch[d],v);
if(o->ch[d]->r < o->r)
rotate(o,^d);
}
} void remove(RG Nt*&o,RG int v){
if(o==null)
return;
if(o->v==v){
if(o->w>){
o->s--;
o->w--;
return;
}
if(o->ch[]!=null && o->ch[]!=null){
RG int d=o->ch[]->r > o->ch[]->r;
rotate(o,d);
remove(o->ch[d],v);
}
else o=o->ch[o->ch[]==null];
}
else{
o->s--;
remove(o->ch[o->v < v],v);
}
if(o!=null)
o->maintain();
} inline int pre(RG int v){
RG int ans=opp;
for(RG Nt*o=root;o!=null;)
v > o->v ? (ans=dmax(ans,o->v),o=o->ch[]) : o=o->ch[];
return ans;
} inline int nxt(RG int v){
RG int ans=inf;
for(RG Nt*o=root;o!=null;)
v < o->v ? (ans=dmin(ans,o->v),o=o->ch[]) : o=o->ch[];
return ans;
} inline int rank(RG int v){
RG int ans=;
for(Nt*o=root;o!=null;){
RG int d= v==o->v? - : (o->v < v);
if(d==-){
ans+=o->ch[]->s;
break;
}
d?(ans+=o->ch[]->s+o->w,o=o->ch[]):o=o->ch[];
}
return ans;
}
}rt[N<<]; void build(RG int x,RG int y,RG int k){
for(RG int i=x;i<=y;i++)
rt[k].insert(rt[k].root,a[i]);
if(x<y){
build(x,mid,k<<);
build(mid+,y,k<<|);
}
} void modify(RG int x,RG int y,RG int k,RG int pos,RG int num){
rt[k].remove(rt[k].root,a[pos]);
rt[k].insert(rt[k].root,num);
if(x<y)
pos<=mid ? modify(x,mid,k<<,pos,num):
modify(mid+,y,k<<|,pos,num);
} int getrank(RG int x,RG int y,RG int k,RG int l,RG int r,RG int num){
if(x==l && y==r)
return rt[k].rank(num);
if(r<=mid)
return getrank(x,mid,k<<,l,r,num);
if(l>mid)
return getrank(mid+,y,k<<|,l,r,num);
return getrank(x,mid,k<<,l,mid,num)+getrank(mid+,y,k<<|,mid+,r,num);
} int getpre(RG int x,RG int y,RG int k,RG int l,RG int r,RG int num){
if(x==l && y==r)
return rt[k].pre(num);
if(r<=mid)
return getpre(x,mid,k<<,l,r,num);
if(l>mid)
return getpre(mid+,y,k<<|,l,r,num);
return dmax(getpre(x,mid,k<<,l,mid,num),getpre(mid+,y,k<<|,mid+,r,num));
} int getnxt(RG int x,RG int y,RG int k,RG int l,RG int r,RG int num){
if(x==l && y==r)
return rt[k].nxt(num);
if(r<=mid)
return getnxt(x,mid,k<<,l,r,num);
if(l>mid)
return getnxt(mid+,y,k<<|,l,r,num);
return dmin(getnxt(x,mid,k<<,l,mid,num),getnxt(mid+,y,k<<|,mid+,r,num));
} inline int getkth(RG int l,RG int r,RG int k){
RG int x=,y=1e8;
while(x<=y)
getrank(,n,,l,r,mid) < k ?
x=mid+:
y=mid-;
if(getrank(,n,,l,r,x)>=k)
x=getpre(,n,,l,r,x);
return x;
}
} int main(){
srand('K'+'a'+'i'+'b'+'a');
n=Rin(),m=Rin();
for(int i=;i<=n;i++)
a[i]=Rin();
Seg::build(,n,);
while(m--){
RG int x,y,k,c=Rin();
switch(c){
case :
x=Rin(),y=Rin(),k=Rin();
printf("%d\n",Seg::getrank(,n,,x,y,k)+);
break;
case :
x=Rin(),y=Rin(),k=Rin();
printf("%d\n",Seg::getkth(x,y,k));
break;
case :
x=Rin(),k=Rin();
Seg::modify(,n,,x,k);
a[x]=k;
break;
case :
x=Rin(),y=Rin(),k=Rin();
printf("%d\n",Seg::getpre(,n,,x,y,k));
break;
case :
x=Rin(),y=Rin(),k=Rin();
printf("%d\n",Seg::getnxt(,n,,x,y,k));
break;
default : break;
}
}
return ;
}
[bzoj3196][Tyvj 1730][二逼平衡树] (线段树套treap)的更多相关文章
- BZOJ - 3196 Tyvj 1730 二逼平衡树 (线段树套treap)
题目链接 区间线段树套treap,空间复杂度$O(nlogn)$,时间复杂度除了查询区间k大是$O(log^3n)$以外都是$O(log^2n)$的. (据说线段树套线段树.树状数组套线段树也能过?) ...
- 【bzoj3196】Tyvj 1730 二逼平衡树 线段树套Treap
题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:1.查询k在区间内的排名2.查询区间内排名为k的值3.修改某一位值上的数值4.查询k在区间内的前驱(前驱定义 ...
- [bzoj3196]Tyvj 1730 二逼平衡树——线段树套平衡树
题目 Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名为k的值 3.修改某一位值上的数值 4.查 ...
- bzoj 3196 && luogu 3380 JoyOI 1730 二逼平衡树 (线段树套Treap)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3196 题面; 3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Se ...
- bzoj3196: Tyvj 1730 二逼平衡树 树套树
地址:http://www.lydsy.com/JudgeOnline/problem.php?id=3196 题目: 3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Sec ...
- 【线段树套平衡树】【pb_ds】bzoj3196 Tyvj 1730 二逼平衡树
线段树套pb_ds里的平衡树,在洛谷OJ上测试,后三个测试点TLE #include<cstdio> #include<algorithm> #include<ext/p ...
- BZOJ3196二逼平衡树——线段树套平衡树(treap)
此为平衡树系列最后一道:二逼平衡树您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名2.查询区间内排名为k的值3.修改某一位值上的数值4.查询 ...
- 【BZOJ 3196】二逼平衡树 线段树套splay 模板题
我写的是线段树套splay,网上很多人写的都是套treap,然而本蒟蒻并不会treap 奉上sth神犇的模板: //bzoj3196 二逼平衡树,支持修改某个点的值,查询区间第k小值,查询区间某个值排 ...
- BZOJ3196: Tyvj 1730 二逼平衡树
传送门 主席树的常数蜜汁优越,在BZOJ上跑了rnk1. 做法很简单,主席树套BIT. 1-3做法很简单,第四个和第五个做法转换成前两个就行了. //BZOJ 3196 //by Cydiater / ...
随机推荐
- Maven项目下WEB-INFO目录下没有编译的classes文件
建立mavan项目之后,在项目目录中没有发现编译的classes文件夹 解决办法: 因为maven是默认将编译后的classes文件存入项目下的target文件夹中,所以我们需要修改编译后存放的路径, ...
- 好用的meta标签
<meta http-equiv="Content-Type" content="text/html;charset=utf-8"/> 保证中文在网 ...
- code style
http://www.jianshu.com/p/0a984f999592# https://github.com/drakeet/LayoutFormatter https://github.com ...
- Eclipse 打开当前文件所在的文件夹
两种方法: 1.安装EasyExplorer插件,有了这个插件就可以很方便地打开资源文件所在的文件夹了. EasyExplorer 从 http://sourceforge.net/projects/ ...
- 为什么new的普通数组用delete 和 delete[]都能正确释放
由同事推荐的一篇博客: 为何new出的对象数组必须要用delete[]删除,而普通数组delete和delete[]都一样-------_CrtMemBlockHeader 文章解释了delete 内 ...
- Linux系统VPS/服务器安装WINDOWS桌面环境可以采用的几个方法
我们公司的几个项目需要在WINDOWS桌面类型的界面操作,哪怕仅有一个浏览器远程操作也是可以的,我们运维部门得到的任务就是需要能在已有的Linux系统的VPS.服务器环境中能够远程操作,至少需要能可以 ...
- 12款免费与开源的NoSQL数据库
Naresh Kumar是位软件工程师与热情的博主,对于编程与新事物拥有极大的兴趣,非常乐于与其他开发者和程序员分享技术上的研究成果.近日,Naresh撰文谈到了12款知名的免费.开源NoSQL数据库 ...
- scala 数组 基本类型
变量尽量用valvar 是不可变 final 常用的 Int̵ Double̵ Long̵ String没有基本类型.scala 任何对象都继承Any Int Double 继承AnyVal Stri ...
- [妙味JS基础]第十一课:字符串、查找高亮显示
知识点总结 字符串方法 var str = '2014年新春快乐哈' * length 字符串长度 str.length =>10 ------------------------------- ...
- line-height:2、line-height:2em、line-height:200%的区别
文章来源: http://www.zhihu.com/question/20394889 总结: 1.line-height:2em.line-height:200% 根据父元素的字体大小计算行高 ...