Basics of Probability

  • Probability density function (pdf). Let X be a continuous random variable. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that any two numbers a and b with

    That is, the probability that X takes on a value in the interval [a, b] is the area above the interval and under the graph of the density function. The graph of f(x) is often referred to as the density curve.

    • The pdf is a function that describes the relative likelihood for the random variable to take on a given value. Intuitively, one can think of f(x) as being the probability of a random variable X falling within the infinitesimal interval [x, x+dx]. My understanding: a probability is regarded as an absolute likelihood?
    • for all x;
    • For continuous random variable X, the probability for any single possible value is 0: 
    • Intuitively, since continuous variable may have infinity possible values, and hence for each single value, the  probability will be extremely small (the chance of a specific event occurring is rare) and approximating 0 by the limitation. On the other hand, for a continuous random variable, it is more meaningful to look at the probability in a certain interval than the probability at a specific point.
    • A continuous random variable usually represents events related to measurements.
  • In mathematics, a moment is, loosely speaking, a quantitative measure of the shape of a set of points
    • The first moment, or the raw moment refers to the meanof a point distribution.
    • The second moment, or the central moment is the variance. The normalized n-th central moment or standardized moment is the n-th central moment divided by ; the normalized n-th central moment of 
    • The third central moment is the skewness.
    • The fourth central moment is called "kurtosis", a measure of whether the distribution is tall and skinny or short and squat, comparing to the normal distribution of the same variance.
    • High-order moments are moments beyond 4th-order moments.
  • Likelihood is a function of how likely an event is, which is weaker than probability. In statistics, probability is the function of data given the parameters while likelihood is the function of parameters given the observed data.

Uniform Distribution

  • The uniform distribution is summarized as follows:

    • notation: U(a, b), where a, b are the minimum and maximum values of a uniform distribution, a<b.
    • p.d.f: 
    • mean: 1/2 * (a+b)
    • variance 1/12 * (b-a)2

Normal Distribution

  • The normal (Gaussian) distribution is summarized as follows:

    • notation: , where  is the mean of the distribution, and is the standard deviation. if , the distribution is called the standard normal distribution.
    • p.d.f: 
    • mean: 
    • variance:
    • P(a<x<b): the integral for arbitrary a and b cannot be evaluated analytically. Hence, it is usually converted to a standard normal distribution (a.k.a standardization) from which the c.d.f can be directly read from a table.
  • Normal distribution are often used in the natural and social sciences for real-valued random variables whose distributions are not known.
  • Standardization: if X is a normal random variable with mean and standard deviation, then is a standard normal random variable.
  • Central Limit Theorem
    • Gaussian distribution is important because of the central limit theorem
    • A crude statement of the central limit theorem: things that are the result of the addition of lots ofsmall effects tend to become Gaussian. That is, no one term in sum should dominate the sum.
    • A more exact statement:
      • Let Y1, Y2, ..., Yn be an infinite sequence of independent random variables (that may be from different pdf), each with the same probability distribution
      • Suppose that the mean and variance of this distribution are bothfinite.
      • For any numbers a and b: 
    • It tells us that under a wild range of circumstances the probability distribution that describes the sum of random variables tends to a Gaussian distribution as the number of terms in the sum 

Multivariate Distributions

  • We can generalize the definition of random variables to vectors. A vector  is a vector whose components are univariate random variables. If are all discrete, then is a discrete random vector. If are all continuous, is called a continuous random vector.
  • The distribution of a random vector is characterized by the joint c.d.f that is defined as: 

References

  1. Paola Sebastiani, A Tutorial on Probability Theory

Study note for Continuous Probability Distributions的更多相关文章

  1. PRML读书笔记——2 Probability Distributions

    2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...

  2. CCJ PRML Study Note - Chapter 1.6 : Information Theory

    Chapter 1.6 : Information Theory     Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, C ...

  3. Common Probability Distributions

    Common Probability Distributions Probability Distribution A probability distribution describes the p ...

  4. PRML读书会第二章 Probability Distributions(贝塔-二项式、狄利克雷-多项式共轭、高斯分布、指数族等)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:11:56 开始吧,先不要发言了,先讲PRML第二章Probability Dis ...

  5. PRML Chapter 2. Probability Distributions

    PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...

  6. 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution

    PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...

  7. 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution

    PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...

  8. 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution

    PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...

  9. Study notes for Discrete Probability Distribution

    The Basics of Probability Probability measures the amount of uncertainty of an event: a fact whose o ...

随机推荐

  1. 从头学起android&lt;AudioManager 声音编辑器.五十.&gt;

    我们用android经常使用的时候,手机的声音增大和缩小操作.在设定场景模式,它往往使用静音和振动运行,这通常是AudioManager来控制的. 今天我们就来看一下AudioManager 的使用. ...

  2. Android学习笔记(十三)——碎片(一)

    碎片 碎片可看作第二种形式的活动,能够创建碎片来包括视图. 碎片总是嵌入在活动中,一般有两种常见形式: 1.碎片A和碎片B分别处于不同的活动中,当选择碎片A中的某一项时,触发碎片B启动: 2.碎片A和 ...

  3. Android菜鸟的成长笔记(1)——Android开发环境搭建从入门到精通

    原文:Android菜鸟的成长笔记(1)--Android开发环境搭建从入门到精通 今天在博客中看到好多Android的初学者对Android的开发环境的搭建不熟悉而导致不能进行学习,所以我决定自己写 ...

  4. 【MongoDB】学习MongoDB推荐三本书

    近期学习mongodb,感觉这三本书写得不错.非常大家分享一下:

  5. callback用法简介

    源地址:https://argcv.com/articles/2669.c callback,函数的回调,从ANSI C开始,一直被广为使用.无论是windows API的所谓消息机制,动态链接库的调 ...

  6. linux cent os putty 问题彻底解决办法

    出现乱码的根本原因: linux系统和putty使用的编码格式不一致. 解决办法: 1.首先使用命令查看linux当前使用的是什么编码格式 echo $LANG 返回的结果有如下几种情况:1)zh_C ...

  7. TWinControl的消息覆盖函数大全(41个WM_函数和31个CM_函数,它的WndProc就处理鼠标(转发)、键盘(取消拖动)、焦点、和WM_NCHITTEST一共4类消息)

    注意,这些函数只有Private一种形式(也就是不允许覆盖,但仍在动态表格中): 其中TWinControl对TControl有10个消息进行了覆盖(红色标记),其中有2个是WM_消息,8个是CM_消 ...

  8. java之jvm学习笔记二(类装载器的体系结构)

    java的class只在需要的时候才内转载入内存,并由java虚拟机的执行引擎来执行,而执行引擎从总的来说主要的执行方式分为四种, 第一种,一次性解释代码,也就是当字节码转载到内存后,每次需要都会重新 ...

  9. 基于SIFT+Kmeans+LDA的图片分类器的实现

    原地址:http://www.cnblogs.com/freedomshe/archive/2012/04/24/2468747.html 题记:2012年4月1日回到家,南大计算机研究僧复试以后,等 ...

  10. HDU 2255 奔小康,赚钱(KM算法模板)

    解决问题的思路: 二部图,正确的匹配,卡费用流,使用KM算法. #include <cstring> #include <algorithm> #include <cst ...