链接  http://acm.hdu.edu.cn/showproblem.php?pid=6038

题意: 
给你一个a序列,代表0到n-1的排列;一个b序列代表0到m-1的排列。问你可以找出多少种函数关系f,f的定义域内的i都满足f(i)=b[f(a[i])]; 
分析:这个主要是找循环节 循环节导致函数有多种情况 找到每段循环节的 取值 种数 相乘起来就是答案
比如说:如果 a 序列是 2 0 1 那么我们可以发现

f[0] = b[f(a[0])]     f[0]  = b[f(2)] 
f[1] = b[f(a[1])]     f[1]  = b[f(0)] 
f[2] = b[f(a[2])]     f[2]  = b[f(1)]

对于这组数来说,假如我们先指定了f(0)对应的在b中的值,那么根据第2个式子,就可以得出f(1),根据f(1)就又可以得出f(2),最后根据f(2)就可以检验f(0)的值是否正确。

仔细观察左边的柿子 (定义域)i与a[ i ] 是循环的 如果想使上述成立,必须右边的柿子(值域)i与b[ i ] 也存在其约数长度的循环节。

如果不是约数长度的循环节会使上述假设矛盾    自己写一下就知道了 只有被整出才会成立。

每个定义域的循环节都可以与每个值域的循环节匹配(满足红字匹配成功)

那么就是找两个序列的不相交的循环节,对于定义域里面的每一个循环节都找出来有多少种情况。每一个循环节的情况数为它所能匹配的值域循环节的长度 和。每个循环节的情况数乘起来就是答案了

样例一  (1+1)*(1+1)=4; a两个环(长度 2 1)           b两个个环(长度 1 1)       2与1 1匹配   1与1 1 匹配

样例二  (1+3)=4;           a一个环(长度 3)                b两个环(长度 1 3)         3与1 3匹配

注   对于一个a循环节  若b循环节中没有能与之匹配的   答案为零   想想为什么  不用特判累积过程中可以处理掉

AC代码

 #include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <algorithm>
#include <string>
#include <queue>
#include <vector>
using namespace std;
const int maxn= 1e5+;
const int mod= 1e9+;
const int inf = 0x3f3f3f3f;
typedef long long ll;
int n,m;
int a[maxn],b[maxn];
int vis[maxn],loop_a[maxn],loop_b[maxn]; //loop存循环节长度
int main()
{
int kase=;
while(scanf("%d %d",&n,&m)!=EOF)
{
for(int i=; i<n; i++)
scanf("%d",&a[i]);
for(int i=; i<m; i++)
scanf("%d",&b[i]);
memset(vis, , sizeof(vis));      //标记是否访问过 找不相交的循环节
memset(loop_b, , sizeof(loop_b));
memset(loop_a, , sizeof(loop_a));
int cnt1=,cnt2=; //cnt记录循环节个数
for(int i = ; i < n; i++)
{
if(!vis[i]) //过程自己模拟一下就明了了
{
int x = a[i];
int len = ;
while(!vis[x])
{
len++;
vis[x] = ;
x = a[x];
}
if(len!=)
loop_a[cnt1++]=len; //保存循环节
}
}
memset(vis, , sizeof vis);
for(int i = ; i < m; i++) //b同理
{
if(!vis[i])
{
int x = b[i];
int len = ;
while(!vis[x])
{
len++;
vis[x] = ;
x = b[x];
}
if(len!=)
loop_b[cnt2++]=len;
}
}
ll ans=;
for(int i=; i<cnt1; i++) //枚举a与b的循环节 试了不会超时 还有更快一些的做法
{
ll sum=;                //记录每个循环节的情况数
for(int j=; j<cnt2; j++)
{
if(loop_a[i]%loop_b[j]==)    //只有是约数才能匹配
{
sum=(sum+loop_b[j])%mod; //加进去 取模
}
}
ans=(ans*sum)%mod; //乘到答案里面
}
printf("Case #%d: %lld\n",++kase,ans);
}
return ;
}

作者水平有限 欢迎大佬纠错!

多校真jb难啊~~~~~QAQ

太菜了

2017多校第一套&&hdu6038 思维 数学的更多相关文章

  1. HDU 6041 I Curse Myself(点双联通加集合合并求前K大) 2017多校第一场

    题意: 给出一个仙人掌图,然后求他的前K小生成树. 思路: 先给出官方题解 由于图是一个仙人掌,所以显然对于图上的每一个环都需要从环上取出一条边删掉.所以问题就变为有 M 个集合,每个集合里面都有一堆 ...

  2. HDU-6035 Colorful Tree(树形DP) 2017多校第一场

    题意:给出一棵树,树上的每个节点都有一个颜色,定义一种值为两点之间路径中不同颜色的个数,然后一棵树有n*(n-1)/2条 路径,求所有的路径的值加起来是多少. 思路:比赛的时候感觉是树形DP,但是脑袋 ...

  3. hdu 6044 : Limited Permutation (2017 多校第一场 1012) 【输入挂 组合数学】

    题目链接 参考博客: http://blog.csdn.net/jinglinxiao/article/details/76165353 http://blog.csdn.net/qq_3175920 ...

  4. hdu 6035:Colorful Tree (2017 多校第一场 1003) 【树形dp】

    题目链接 单独考虑每一种颜色,答案就是对于每种颜色至少经过一次这种的路径条数之和.反过来思考只需要求有多少条路径没有经过这种颜色即可. 具体实现过程比较复杂,很神奇的一个树形dp,下面给出一个含较详细 ...

  5. 2017 多校5 hdu 6093 Rikka with Number

    2017 多校5 Rikka with Number(数学 + 数位dp) 题意: 统计\([L,R]\)内 有多少数字 满足在某个\(d(d>=2)\)进制下是\(d\)的全排列的 \(1 & ...

  6. hdu6074[并查集+LCA+思维] 2017多校4

    看了标答感觉思路清晰了许多,用并查集来维护全联通块的点数和边权和. 用另一个up[]数组(也是并查集)来保证每条边不会被重复附权值,这样我们只要将询问按权值从小到大排序,一定能的到最小的边权和与联通块 ...

  7. hdu6038[找规律+循环节] 2017多校1

    /*hdu6038[找规律+循环节] 2017多校1*/ #include<bits/stdc++.h> using namespace std; typedef long long LL ...

  8. hdu6035[dfs+思维] 2017多校1

    /*hdu6035[dfs+思维] 2017多校1*/ //合并色块, 妙啊妙啊 #include<bits/stdc++.h> using namespace std; ; const ...

  9. 2019年牛客多校第一场B题Integration 数学

    2019年牛客多校第一场B题 Integration 题意 给出一个公式,求值 思路 明显的化简公式题,公式是分母连乘形式,这个时候要想到拆分,那如何拆分母呢,自然是裂项,此时有很多项裂项,我们不妨从 ...

随机推荐

  1. 函数PYXX_READ_PAYROLL_RESULT的dump问题

    发现有两个HR的后台定时任务出现dump,日志表示,是PYXX_READ_PAYROLL_RESULT产生了类型冲突的异常CX_SY_DYN_CALL_ILLEGAL_TYPE. 日志标题部分: 类别 ...

  2. Python学习日记:day2

    1.格式化输出 name = input("请输入你的名字:") age =input("请输入你的年龄:") job =input("请输入你的工作 ...

  3. 用html和css轻松实现康奈尔笔记(5R笔记)模板

    缘起 人家都说康奈尔笔记法,很好用呢,能抵抗遗忘曲线,让你的笔记事半功倍,有兴趣的同学自行百度哈. 网上有很多现成的模板,下载下来之后吧,看着好像在上面写英文可能更方便一点,行距很小,而且还有网址在上 ...

  4. windows server 2008 R2服务器安装IIS并添加网站

    一.连接远程计算机 1.因为我的电脑是win7系统,故这里以win7为例,其他windows系统大同小异,首先点开开始菜单栏,在windows附件下找到远程桌面连接 或者采用通用的方法,利用快捷键wi ...

  5. bzoj 2119: 股市的预测

    Description 墨墨的妈妈热爱炒股,她要求墨墨为她编写一个软件,预测某只股票未来的走势.股票折线图是研究股票的必备工具,它通过一张时间与股票的价位的函数图像清晰地展示了股票的走势情况.经过长时 ...

  6. ES6 函数的扩展2

    8.2 rest参数 ES6引入rest参数(形式为"-变量名"),用于获取函数的多余参数,这样就不需要使用arguments对象了. arguments对象并没有数组的方法,re ...

  7. ConcurrentHashMap 从Java7 到 Java8的改变

    一.关于分段锁 集合框架很大程度减少了java程序员的重复劳动,然而,在Java多线程环境中,以线程安全的方式使用集合类是一个首先考虑的问题. 越来越多的程序员了解到了ConcurrentHashMa ...

  8. go generate 生成代码

    今后一段时间要研究下go generate,在官网博客上看了Rob Pike写的generating code,花了一些时间翻译了下.有几个句子翻译的是否正确有待考量,欢迎指正. 生成代码 通用计算的 ...

  9. JAVA模板方法

    package project01; abstract class MyRuntime{ public final void runtime(){ long starttime =System.cur ...

  10. what is cdecl?

    cdecl这是一个Linux上功能很强大的一个小型程序,它最主要的功能就是能帮助我们解释一个很复杂的C语言声明. 例如,我写了这样一个C语言的一个声明:int   *(*g[])(int , floa ...