题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3556

How Many Sets I


Time Limit: 2 Seconds      Memory Limit: 65536 KB


Give a set S, |S| = n, then how many ordered set group (S1, S2, ..., Sk) satisfies S1 ∩ S2 ∩ ... ∩ Sk = ∅. (Si is a subset of S, (1 <= i <= k))

Input

The input contains multiple cases, each case have 2 integers in one line represent n and k(1 <= k <= n <= 231-1), proceed to the end of the file.

Output

Output the total number mod 1000000007.

Sample Input

1 1
2 2

Sample Output

1
9
题解:输入n和k 分别表示有一个元素个数为n的集合,从中选出它的k个子集,求k个不相交子集的总数
题解:数学题,容斥定理
首先,n个元素的集合的子集有2^n个,每次从中选出k个集合就是总共2^nk种情况,其中包含一个公共元素的情况有C(1,n)*2^(n-1)k,包含两个公共元素的情况有C(2,n)*2^(n-2)*k,根据容斥定理得出总数为  所有情况-含有一个公共元素的+含有两个公共元素的-含有三个公共元素的+含有四个公共元素的……最后根据二项式公式,得出最后结果为(2^k-1)^n;
介绍一下容斥定理(加法公式):
引入:如果被计数的事物有A、B两类,那么,A类B类元素个数总和= 属于A类元素个数+ 属于B类元素个数—既是A类又是B类的元素个数。(A∪B = A+B - A∩B)
公式介绍:
对于这道题来说,要求的是拥有公共元素个数为0的,用容斥定理的推论上式的最后一项,移向即可,现在可以。
代码:
 #include<cstdio>
#include<cstring>
using namespace std;
const int M = ;
#define ll long long
ll f(ll a,ll b)
{
ll res = ;
while(b)
{
if(b&) res = (res*a)%M;
a = a*a;
a %= M;
b= b/;
}
return res%M;
}
int main()
{
ll n,k;
while(~scanf("%lld%lld",&n,&k))
{
ll ans = f(,k);
ans--;
ans = f(ans,n);
printf("%lld\n",ans);
}
return ;
}
 

How Many Sets I(容斥定理)的更多相关文章

  1. TOJ 4008 The Leaf Eaters(容斥定理)

    Description As we all know caterpillars love to eat leaves. Usually, a caterpillar sits on leaf, eat ...

  2. HDU 1796How many integers can you find(简单容斥定理)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  3. Codeforces Round #330 (Div. 2) B. Pasha and Phone 容斥定理

    B. Pasha and Phone Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/595/pr ...

  4. hdu_5213_Lucky(莫队算法+容斥定理)

    题目连接:hdu_5213_Lucky 题意:给你n个数,一个K,m个询问,每个询问有l1,r1,l2,r2两个区间,让你选取两个数x,y,x,y的位置为xi,yi,满足l1<=xi<=r ...

  5. HDU - 4135 Co-prime 容斥定理

    题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...

  6. BZoj 2301 Problem b(容斥定理+莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MB Submit: 7732  Solved: 3750 [Submi ...

  7. BZOJ2839 : 集合计数 (广义容斥定理)

    题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...

  8. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. HDU 4135 Co-prime 欧拉+容斥定理

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

随机推荐

  1. xamarin android menu的用法

    在Android中的菜单有如下几种: OptionMenu:选项菜单,android中最常见的菜单,通过Menu键来调用 SubMenu:子菜单,android中点击子菜单将弹出一个显示子菜单项的悬浮 ...

  2. ArcGIS API for JavaScript 4.2学习笔记[6] goTo()地图动画

    这是个很有意思的例子,不过例子给的比较复杂,需要查很多API,我会在文章最后给出关键的类和属性解释. 同样发现一个很有意思的事儿:博客园似乎有爬虫,我4号发布的blogs,5号就在百度和google搜 ...

  3. python 将文件夹内的图片转换成PDF

    import os import stringfrom PIL import Imagefrom reportlab.lib.pagesizes import A4, landscapefrom re ...

  4. Python学习(四):模块入门

    1.模块介绍 模块:代码实现的某个功能的集合 模块分类: 自定义模块 内置标准模块 开源模块 模块的常用方法: 是否为主文件:__name__ == '__main__' 如果是直接执行的某程序,那么 ...

  5. jquery获取焦点和失去焦点事件代码

    input失去焦点和获得焦点 鼠标在搜索框中点击的时候里面的文字就消失了. 我们在做网站的时候经常会用到搜索框的获得焦点和失去焦点的事件,因为懒,每次都去写非常的烦,于是就一劳永逸,遇到类似情况就来调 ...

  6. 解决Windows和Linux使用npm打包js和css文件不同的问题

    1.问题出现 最近公司上线前端H5页面,使用npm打包,特别奇怪的是每次打包发现css和js文件与Windows下打包不一致(网页使用Windows环境开发),导致前端页面功能不正常. 2.问题排查 ...

  7. [编织消息框架][消息服务]rmi

    RMI(即Remote Method Invoke 远程方法调用) 远程对象: 用于远程客户端调用 必需继承java.rmi.Remote,每个调用方法必须添加java.rmi.RemoteExcep ...

  8. Java中ArrayList与LinkedList的区别

    Java中ArrayList与LinkedList的区别 一般大家都知道ArrayList和LinkedList的区别: 1. ArrayList的实现是基于数组,LinkedList的实现是基于双向 ...

  9. Kafka的特点及使用场景

    Kafka是分布式发布-订阅消息系统.它最初由LinkedIn公司开发,之后成为Apache项目的一部分.Kafka是一个分布式的,可划分的,冗余备份的持久性的日志服务.它主要用于处理活跃的流式数据. ...

  10. 【Tarjan】洛谷P3379 Tarjan求LCA

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...