题目链接

昨天上随机信号分析讲马氏链的时候突然想到这题的解法,今天写一下

定义矩阵A,Ans=A^n,令A[i][j]表示,经过1次变换后,第i个位置上的机器人位于第j个位置的情况数,则Ans[i][j]表示最初在第i个位置上的机器人n次变换后位于第j个位置的情况数

最后求一下任意两个机器人不在相同位置的情况数之和(注意乘法原理和加法原理的应用)

#include<bits/stdc++.h>
using namespace std;
typedef long long LL; const int N=;
const LL mod=1e9+; LL hh[N][N]= {{,,,},
{,,,},
{,,,},
{,,,}
}; struct Mat
{
LL mat[N][N];
Mat()
{
memset(mat,,sizeof(mat));
}
LL* operator [](int x) //注意这种写法
{
return mat[x];
}
} A;
Mat Mut(Mat a,Mat b)
{
Mat c;
for(int k=; k<N; k++)
for(int i=; i<N; i++)
for(int j=; j<N; j++)
{
c[i][j]+=a[i][k]*b[k][j]%mod;
c[i][j]=c[i][j]%mod;
}
return c;
}
Mat Qpow(Mat a,LL n)
{
Mat c;
for(int i=; i<N; ++i)
c[i][i]=;
for(; n; n>>=)
{
if(n&) c=Mut(c,a);
a=Mut(a,a);
}
return c;
} void init_A()
{
for(int i=; i<N; i++)
for(int j=; j<N; j++)
A[i][j]=hh[i][j];
} int main()
{
LL n,Fn,Gn;
init_A();
while(cin>>n)
{
Mat Ans=Qpow(A,n);
LL sum=;
for(int i1=; i1<; i1++)
for(int i2=; i2<; i2++)
for(int i3=; i3<; i3++)
for(int i4=; i4<; i4++)
if(i1!=i2&&i1!=i3&&i1!=i4&&i2!=i3&&i2!=i4&&i3!=i4)
{
sum+=Ans[][i1]*Ans[][i2]%mod*Ans[][i3]%mod*Ans[][i4]%mod;
sum%=mod;
}
cout<<sum<<endl;
}
}

51nod_1122:机器人走方格 V4 (矩阵快速幂)的更多相关文章

  1. 51nod1122 机器人走方格 V4

    矩阵快速幂求出每个点走n步后到某个点的方案数.然后暴力枚举即可 #include<cstdio> #include<cstring> #include<cctype> ...

  2. 1122 机器人走方格 V4

    1122 机器人走方格 V4 基准时间限制:1 秒 空间限制:131072 KB  四个机器人a b c d,在2 * 2的方格里,一开始四个机器人分别站在4个格子上,每一步机器人可以往临近的一个格子 ...

  3. 51nod 1122 机器人走方格 V4 【矩阵快速幂】

    首先建立矩阵,给每个格子编号,然后在4*4的格子中把能一步走到的格子置为1,然后乘n次即可,这里要用到矩阵快速幂 #include<iostream> #include<cstdio ...

  4. 51nod 1122:机器人走方格 V4 (矩阵快速幂)

    题目链接 昨天上随机信号分析讲马氏链的时候突然想到这题的解法,今天写一下 定义矩阵A,Ans=A^n,令A[i][j]表示,经过1次变换后,第i个位置上的机器人位于第j个位置的情况数,则Ans[i][ ...

  5. 51nod-1119 1119 机器人走方格 V2(组合数学+乘法逆元+快速幂)

    题目链接: 1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很 ...

  6. hdu 2157 从a点走到b点刚好k步的方案数是多少 (矩阵快速幂)

    n个点 m条路 询问T次 从a点走到b点刚好k步的方案数是多少 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值把 给定的图转为邻接矩阵,即A(i,j)=1当且仅当存 ...

  7. hdu4686 Arc of Dream ——构造矩阵+快速幂

    link: http://acm.hdu.edu.cn/showproblem.php?pid=4686 构造出来的矩阵是这样的:根据题目的ai * bi = ……,可以发现 矩阵1 * 矩阵3 = ...

  8. 2014 Super Training #10 G Nostop --矩阵快速幂

    原题: FZU 2173 http://acm.fzu.edu.cn/problem.php?pid=2173 一开始看到这个题毫无头绪,根本没想到是矩阵快速幂,其实看见k那么大,就应该想到用快速幂什 ...

  9. HDU4887_Endless Punishment_BSGS+矩阵快速幂+哈希表

    2014多校第一题,当时几百个人交没人过,我也暴力交了几发,果然不行. 比完了去学习了BSGS才懂! 题目:http://acm.hdu.edu.cn/showproblem.php?pid=4887 ...

随机推荐

  1. Javaweb---服务器Tomcat与Eclipse的关联

    1.与eclipse的关联 打开eclipse-->window-->preferences 在搜索框输入->server->进行搜索,选择-–>server and R ...

  2. 【Python中if __name__ == '__main__': 的解析】

    在很多Python代码中,在代码的最下方会看到  if __name__ == '__main__':,这段代码到底有什么用呢? 在理解这个语句的作用前,需要知道的是,一般的Python文件后缀为.p ...

  3. JavaScript 循环性能比较

    有一句话叫做 没有什么事是一个循环解决不了的,如果真有,那就再来一个循环. 循环的种类有很多 正向for循环,逆向for循环,while循环,for-in循环(理论上性能最差),for-each循环, ...

  4. css代码初始化

    @charset "utf-8";/* 页面元素初始化和常用样式定义-start *//*======== 全局 ========*/body, div, dl, dt, dd, ...

  5. SQL Server 实现Split函数

    添加一个表值函数. CREATE function [dbo].[fnSplit] ( ), --要分割的字符串 ) --字符串之间的分隔符 ) ,), TempName )) as begin de ...

  6. PHP 判断是否包含在某个字符串中

    1.用strpos函数,查找字符首次出现的位置,如果不存在则会返回false$str= 'abc';$needle= 'e';$pos = strpos($str, $needle);2.用strst ...

  7. Lucence

    Lucene是apache软件基金会4 jakarta项目组的一个子项目,是一个开放源代码的全文检索引擎工具包,但它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引 ...

  8. python连接impala(安装impyla)

    相关环境如下: Python3.4 Win7 64位 参照官网https://github.com/cloudera/impyla中的安装步骤执行: 1.pip install six 2.pip i ...

  9. zend studio修改字体

    zend studio修改字体 没想到zend studio 9中对中文显示不太好看,似乎有点小了.修改如下:打开Window->Preferences->General->Appe ...

  10. 使用UDP完成网络通信

    语言聊天有可以接受丢包但是不能接受乱序的特性,所以可以采用UDP来 传输数据提高效率. 因为UDP本身不可靠传输的特性,为了保证玩家可靠的接入服务器和一些 操作的正确执行,还是需要一些额外的代码保证U ...