Problem Description
Deep neural networks (DNN) have shown significant improvements in several application domains including computer vision and speech recognition. In computer vision, a particular type of DNN, known as Convolutional Neural Networks (CNN), have demonstrated state-of-the-art results in object recognition and detection.

Convolutional neural networks show reliable results on object recognition and detection that are useful in real world applications. Concurrent to the recent progress in recognition, interesting advancements have been happening in virtual reality (VR by Oculus), augmented reality (AR by HoloLens), and smart wearable devices. Putting these two pieces together, we argue that it is the right time to equip smart portable devices with the power of state-of-the-art recognition systems. However, CNN-based recognition systems need large amounts of memory and computational power. While they perform well on expensive, GPU-based machines, they are often unsuitable for smaller devices like cell phones and embedded electronics.

In order to simplify the networks, Professor Zhang tries to introduce simple, efficient, and accurate approximations to CNNs by binarizing the weights. Professor Zhang needs your help.

More specifically, you are given a weighted vector W=(w1,w2,...,wn). Professor Zhang would like to find a binary vector B=(b1,b2,...,bn) (bi∈{+1,−1})and a scaling factor α≥0 in such a manner that ∥W−αB∥2 is minimum.

Note that ∥⋅∥ denotes the Euclidean norm (i.e. ∥X∥=sqrt(x12+⋯+xn2) where X=(x1,x2,...,xn)).

 
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains an integers n (1≤n≤100000) -- the length of the vector. The next line contains n integers: w1,w2,...,wn (−10000≤wi≤10000).

 
Output
For each test case, output the minimum value of ∥W−αB∥2 as an irreducible fraction "p/q" where p, q are integers, q>0.
 
Sample

Sample Input

Sample Output
/
/
/

题意:

  已知一种计算方式||X||=sqrt(x12+x22+...+xn2),现给出W的值,求||W-aB||的最小值,其中B只能取-1和1,a为缩放因子,其中a>=0。

思路:

  实际上求(W1-ab1)2+(W2-ab22+...+(Wn-abn2的最小值,将这个公式展开,经过化简可以得到(Wi的平方和)+na2-2a(Wi绝对值的和)

  求出a的值,然后将其带入即可,相当于求一元二次方程的最小值。即a=b/2a。

  最后注意分子、分母分开计算,最后GCD求最大公因数。GCD用long long。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<math.h>
using namespace std;
long long gcd(long long a,long long b)//一定记得用longlong
{
if(b==)
return a;
return gcd(b,a%b);
}
int main()
{
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
int a[];
long long sum1,sum;
sum1=sum=;//sum1为平方和,sum为和
for(int i=; i<n; i++)
{
cin>>a[i];
if(a[i]<)//一定取正值,因为b为-1或者+1,为了使最后结果最小,sum1应该最大
a[i]=-a[i];
sum1+=a[i];
sum+=(a[i]*a[i]);
}
/*接下来注意不能用b/2a 因为他不一定为整数,最后求得是分数,所以要将最后的公式化作分子分母形式*/
long long nb=n*sum-sum1*sum1 ;
long long x;
x=gcd(nb,n);
cout<<nb/x<<"/"<<n/x<<endl;
}
return ;
}

HDU5734 Acperience(数学推导)的更多相关文章

  1. hdu-5734 Acperience(数学)

    题目链接: Acperience Time Limit: 4000/2000 MS (Java/Others)   Memory Limit: 65536/65536 K (Java/Others) ...

  2. HDU 5734 Acperience(数学推导)

    Problem Description Deep neural networks (DNN) have shown significant improvements in several applic ...

  3. 借One-Class-SVM回顾SMO在SVM中的数学推导--记录毕业论文5

    上篇记录了一些决策树算法,这篇是借OC-SVM填回SMO在SVM中的数学推导这个坑. 参考文献: http://research.microsoft.com/pubs/69644/tr-98-14.p ...

  4. 关于不同进制数之间转换的数学推导【Written By KillerLegend】

    关于不同进制数之间转换的数学推导 涉及范围:正整数范围内二进制(Binary),八进制(Octonary),十进制(Decimal),十六进制(hexadecimal)之间的转换 数的进制有多种,比如 ...

  5. UVA - 10014 - Simple calculations (经典的数学推导题!!)

    UVA - 10014 Simple calculations Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & ...

  6. 『sumdiv 数学推导 分治』

    sumdiv(POJ 1845) Description 给定两个自然数A和B,S为A^B的所有正整数约数和,编程输出S mod 9901的结果. Input Format 只有一行,两个用空格隔开的 ...

  7. LDA-线性判别分析(二)Two-classes 情形的数学推导

    本来是要调研 Latent Dirichlet Allocation 的那个 LDA 的, 没想到查到很多关于 Linear Discriminant Analysis 这个 LDA 的资料.初步看了 ...

  8. leetcode 343. Integer Break(dp或数学推导)

    Given a positive integer n, break it into the sum of at least two positive integers and maximize the ...

  9. [hdu5307] He is Flying [FFT+数学推导]

    题面 传送门 思路 看到这道题,我的第一想法是前缀和瞎搞,说不定能$O\left(n\right)$? 事实证明我的确是瞎扯...... 题目中的提示 这道题的数据中告诉了我们: $sum\left( ...

  10. ZOJ3329(数学推导+期望递推)

    要点: 1.期望的套路,要求n以上的期望,则设dp[i]为i分距离终点的期望步数,则终点dp值为0,答案是dp[0]. 2.此题主要在于数学推导,一方面是要写出dp[i] = 什么,虽然一大串但是思维 ...

随机推荐

  1. svn命令行便捷代码

    在把分支merge回主干的时候,有时候需要只提交自己修改过的文件,但是很多文件其实分支上没动过,但却显示有变化,这个其实是属性发生了变化.svn通过svn:mergeinfo来记录merge的记录.所 ...

  2. Redis 数据类型介绍

    http://qifuguang.me/2015/09/29/Redis%E4%BA%94%E7%A7%8D%E6%95%B0%E6%8D%AE%E7%B1%BB%E5%9E%8B%E4%BB%8B% ...

  3. php中有关合并某一字段键值相同的数组合并

    <?php function combine($array,$start,$key,$newkey){ static $new; //静态变量 foreach($array as $k=> ...

  4. 解决运行pytorch程序多线程问题

    当我使用pycharm运行  (https://github.com/Joyce94/cnn-text-classification-pytorch )  pytorch程序的时候,在Linux服务器 ...

  5. 【Android Developers Training】 48. 轻松拍摄照片

    注:本文翻译自Google官方的Android Developers Training文档,译者技术一般,由于喜爱安卓而产生了翻译的念头,纯属个人兴趣爱好. 原文链接:http://developer ...

  6. 浅谈angular中的promise

    promise目的就是为了跳出回调地狱.老掉牙的东西,大神轻拍. 举个最简单的例子:请求数据(getData),解析数据(executeData),显示数据(showData). //获取数据 fun ...

  7. 【原创】Kafka 0.11消息设计

    Kafka 0.11版本增加了很多新功能,包括支持事务.精确一次处理语义和幂等producer等,而实现这些新功能的前提就是要提供支持这些功能的新版本消息格式,同时也要维护与老版本的兼容性.本文将详细 ...

  8. 极客圈(一)树莓派3B协同Python打造个性化天气闹钟

    人生苦短,我用Python~ 一直想自己折腾些极客的东西出来,供自己使用或者是供他人使用.一则可能对自己的生活是一种帮助,二则是对自己技能的提高,三则显得高大上,一直努力,一直提高,一直Happy!~ ...

  9. SpringMvc多视图配置(jsp、velocity、freemarker) velocity在springmvc.xml配置VelocityViewResolver,VelocityConfigurer,FreeMarkerConfigurer,FreeMarkerViewResolver

    ?xml version="1.0"encoding="UTF-8"?> <beans xmlns="http://www.springf ...

  10. God 1.1.1 多线程之内存可见性

    共享变量在线程间的可见性 synchronize实现可见性 volatile实现可见性 指令重排序 as-if-serial语义 volatile使用注意事项 synchronized和volatil ...