5种方法推导Normal Equation
引言:
Normal Equation 是最基础的最小二乘方法。在Andrew Ng的课程中给出了矩阵推到形式,本文将重点提供几种推导方式以便于全方位帮助Machine Learning用户学习。
Notations:
RSS(Residual Sum Squared error):残差平方和
β:参数列向量
X:N×p 矩阵,每行是输入的样本向量
y:标签列向量,即目标列向量
Method 1. 向量投影在特征纬度(Vector Projection onto the Column Space)
是一种最直观的理解: The optimization of linear regression is equivalent to finding the projection of vector y onto the column space of X. As the projection is denoted by Xβ, the optimal configuration of β is when the error vector y−Xβis orthogonal to the column space of X, that is
XT(y−Xβ)=0.(1)
Solving this gives:
β=(XTX)−1XTy.
Method 2. Direct Matrix Differentiation
通过重写S(β)为简单形式是一种最简明的方法
S(β)=(y−Xβ)T(y−Xβ)=yTy−βTXTy−yTXβ+βTXTXβ=yTy−2βTXTy+βTXTXβ.
差异化 S(β) w.r.t. β:
−2yTX+βT(XTX+(XTX)T)=−2yTX+2βTXTX=0,
Solving S(β) gives:
β=(XTX)−1XTy.
Method 3. Matrix Differentiation with Chain-rule
This is the simplest method for a lazy person, as it takes very little effort to reach the solution. The key is to apply the chain-rule:
∂S(β)∂β=∂(y−Xβ)T(y−Xβ)∂(y−Xβ)∂(y−Xβ)∂β=−2(y−Xβ)TX=0,
solving S(β) gives:
β=(XTX)−1XTy.
This method requires an understanding of matrix differentiation of the quadratic form: ∂xTWx∂x=xT(W+WT).
Method 4. Without Matrix Differentiation
We can rewrite S(β) as following:
S(β)=⟨β,β⟩−2⟨β,(XTX)−1XTy⟩+⟨(XTX)−1XTy,(XTX)−1XTy⟩+C,
where ⟨⋅,⋅⟩ is the inner product defined by
⟨x,y⟩=xT(XTX)y.
The idea is to rewrite S(β) into the form of S(β)=(x−a)2+b such that x can be solved exactly.
Method 5. Statistical Learning Theory
An alternative method to derive the normal equation arises from the statistical learning theory. The aim of this task is to minimize the expected prediction error given by:
EPE(β)=∫(y−xTβ)Pr(dx,dy),
where x stands for a column vector of random variables, y denotes the target random variable, and β denotes a column vector of parameters (Note the definitions are different from the notations before).
Differentiating EPE(β) w.r.t. β gives:
∂EPE(β)∂β=∫2(y−xTβ)(−1)xTPr(dx,dy).
Before we proceed, let’s check the dimensions to make sure the partial derivative is correct. EPE is the expected error: a 1×1 vector. β is a column vector that is N×1. According to the Jacobian in vector calculus, the resulting partial derivative should take the form
∂EPE∂β=(∂EPE∂β1,∂EPE∂β2,…,∂EPE∂βN),
which is a 1×N vector. Looking back at the right-hand side of the equation above, we find 2(y−xTβ)(−1) being a constant while xTbeing a row vector, resuling the same 1×Ndimension. Thus, we conclude the above partial derivative is correct. This derivative mirrors the relationship between the expected error and the way to adjust parameters so as to reduce the error. To understand why, imagine 2(y−xTβ)(−1) being the errors incurred by the current parameter configurations β and xT being the values of the input attributes. The resulting derivative equals to the error times the scales of each input attribute. Another way to make this point is: the contribution of error from each parameter βi has a monotonic relationship with the error 2(y−xTβ)(−1) as well as the scalar xT that was multiplied to each βi.
Now, let’s go back to the derivation. Because 2(y−xTβ)(−1) is 1×1, we can rewrite it with its transpose:
∂EPE(β)∂β=∫2(y−xTβ)T(−1)xTPr(dx,dy).
Solving ∂EPE(β)∂β=0 gives:
E[yTxT−βTxxT]=0E[βTxxT]=E[yTxT]E[xxTβ]=E[xy]β=E[xxT]−1E[xy].
5种方法推导Normal Equation的更多相关文章
- 机器学习入门:Linear Regression与Normal Equation -2017年8月23日22:11:50
本文会讲到: (1)另一种线性回归方法:Normal Equation: (2)Gradient Descent与Normal Equation的优缺点: 前面我们通过Gradient Desce ...
- 正规方程 Normal Equation
正规方程 Normal Equation 前几篇博客介绍了一些梯度下降的有用技巧,特征缩放(详见http://blog.csdn.net/u012328159/article/details/5103 ...
- machine learning (7)---normal equation相对于gradient descent而言求解linear regression问题的另一种方式
Normal equation: 一种用来linear regression问题的求解Θ的方法,另一种可以是gradient descent 仅适用于linear regression问题的求解,对其 ...
- coursera机器学习笔记-多元线性回归,normal equation
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...
- Normal Equation
一.Normal Equation 我们知道梯度下降在求解最优参数\(\theta\)过程中需要合适的\(\alpha\),并且需要进行多次迭代,那么有没有经过简单的数学计算就得到参数\(\theta ...
- Normal Equation Algorithm
和梯度下降法一样,Normal Equation(正规方程法)算法也是一种线性回归算法(Linear Regression Algorithm).与梯度下降法通过一步步计算来逐步靠近最佳θ值不同,No ...
- normal equation(正规方程)
normal equation(正规方程) 正规方程是通过求解下面的方程来找出使得代价函数最小的参数的: \[ \frac{\partial}{\partial\theta_j}J\left(\the ...
- YbSoftwareFactory 代码生成插件【二十五】:Razor视图中以全局方式调用后台方法输出页面代码的三种方法
上一篇介绍了 MVC中实现动态自定义路由 的实现,本篇将介绍Razor视图中以全局方式调用后台方法输出页面代码的三种方法. 框架最新的升级实现了一个页面部件功能,其实就是通过后台方法查询数据库内容,把 ...
- 去除inline-block元素间间距的N种方法
这篇文章发布于 2012年04月24日,星期二,22:38,归类于 css相关. 阅读 147771 次, 今日 52 次 by zhangxinxu from http://www.zhangxin ...
随机推荐
- 关于js的parseInt方式在不同浏览器下的表现
今天开发期间遇到个需求要把日期格式转换成毫秒数 日期为:2015-08-10 split之后使用parseInt将2015,08,10分别转化为数字格式. 但是使用parseInt('08')的时候却 ...
- C语言 extern4 全局数组
headB.h中: #ifndef headB_H #define headB_H ; ]={,,,,}; #endif .c文件中: #include "headB.h" #in ...
- SQLite基础回顾
SQLite基础回顾 SQLite iOS中的数据存储方式 Plist(NSArray\NSDictionary) Preference(偏好设置\NSUserDefaults) NSCoding(N ...
- 怎么在ubuntu上运行php代码?
1. 首先,你需要安装Apache2. sudo apt-get update sudo apt-get install apache2 当安装完以后,Apache就已经开始运行啦,你可以进行测试,通 ...
- MATLAB中的分类器
MATLAB中的分类器 目前了解到的MATLAB中分类器有:K近邻分类器,随机森林分类器,朴素贝叶斯,集成学习方法,鉴别分析分类器,支持向量机.现将其主要函数使用方法总结如下,更多细节需参考MAT ...
- Python sphinx-build在Windows系统中生成Html文档
看到前同事发布的“Markdown/reST 文档发布流水线”基于TFS.Docker.Azure等工具和平台进行文档发布的介绍说明,不得不在心中暗暗竖起大拇指.这套模式,实现了文档编写后版本管理.发 ...
- Codeforces 506E Mr. Kitayuta's Gift (矩阵乘法,动态规划)
描述: 给出一个单词,在单词中插入若干字符使其为回文串,求回文串的个数(|s|<=200,n<=10^9) 这道题超神奇,不可多得的一道好题 首先可以搞出一个dp[l][r][i]表示回文 ...
- 使用SigbalR发送通知
微信商城使用支付宝支付的时候,需要有个过度页面提示用户用浏览器打开页面去支付,等用户在浏览器支付完之后再打开微信(微信此时依旧显示的是过度页面),过度页面需要跳转到订单详情页面.那么这个过度页面怎么知 ...
- 自己写的python脚本(抄的别人的,自己改了改,用于整理大量txt数据并插入到数据库)
昨天,遇到了一个问题,有100w条弱口令数据,需要插入到数据库中,而且保存格式为txt. 身为程序员不可能一条一条的去写sql语句吧(主要是工作量太大,我也懒得干).所以,我 就百度了一下,看有没有相 ...
- 安装 MySQL 后,需要调整的 10 个性能配置项
注意:这篇博文的更新版本在这儿,MySQL 5.7 适用! 原文:Ten MySQL performance tuning settings after installation 在本文中,我们将探讨 ...