5种方法推导Normal Equation
引言:
Normal Equation 是最基础的最小二乘方法。在Andrew Ng的课程中给出了矩阵推到形式,本文将重点提供几种推导方式以便于全方位帮助Machine Learning用户学习。
Notations:
RSS(Residual Sum Squared error):残差平方和
β:参数列向量
X:N×p 矩阵,每行是输入的样本向量
y:标签列向量,即目标列向量
Method 1. 向量投影在特征纬度(Vector Projection onto the Column Space)
是一种最直观的理解: The optimization of linear regression is equivalent to finding the projection of vector y onto the column space of X. As the projection is denoted by Xβ, the optimal configuration of β is when the error vector y−Xβis orthogonal to the column space of X, that is
XT(y−Xβ)=0.(1)
Solving this gives:
β=(XTX)−1XTy.
Method 2. Direct Matrix Differentiation
通过重写S(β)为简单形式是一种最简明的方法
S(β)=(y−Xβ)T(y−Xβ)=yTy−βTXTy−yTXβ+βTXTXβ=yTy−2βTXTy+βTXTXβ.
差异化 S(β) w.r.t. β:
−2yTX+βT(XTX+(XTX)T)=−2yTX+2βTXTX=0,
Solving S(β) gives:
β=(XTX)−1XTy.
Method 3. Matrix Differentiation with Chain-rule
This is the simplest method for a lazy person, as it takes very little effort to reach the solution. The key is to apply the chain-rule:
∂S(β)∂β=∂(y−Xβ)T(y−Xβ)∂(y−Xβ)∂(y−Xβ)∂β=−2(y−Xβ)TX=0,
solving S(β) gives:
β=(XTX)−1XTy.
This method requires an understanding of matrix differentiation of the quadratic form: ∂xTWx∂x=xT(W+WT).
Method 4. Without Matrix Differentiation
We can rewrite S(β) as following:
S(β)=⟨β,β⟩−2⟨β,(XTX)−1XTy⟩+⟨(XTX)−1XTy,(XTX)−1XTy⟩+C,
where ⟨⋅,⋅⟩ is the inner product defined by
⟨x,y⟩=xT(XTX)y.
The idea is to rewrite S(β) into the form of S(β)=(x−a)2+b such that x can be solved exactly.
Method 5. Statistical Learning Theory
An alternative method to derive the normal equation arises from the statistical learning theory. The aim of this task is to minimize the expected prediction error given by:
EPE(β)=∫(y−xTβ)Pr(dx,dy),
where x stands for a column vector of random variables, y denotes the target random variable, and β denotes a column vector of parameters (Note the definitions are different from the notations before).
Differentiating EPE(β) w.r.t. β gives:
∂EPE(β)∂β=∫2(y−xTβ)(−1)xTPr(dx,dy).
Before we proceed, let’s check the dimensions to make sure the partial derivative is correct. EPE is the expected error: a 1×1 vector. β is a column vector that is N×1. According to the Jacobian in vector calculus, the resulting partial derivative should take the form
∂EPE∂β=(∂EPE∂β1,∂EPE∂β2,…,∂EPE∂βN),
which is a 1×N vector. Looking back at the right-hand side of the equation above, we find 2(y−xTβ)(−1) being a constant while xTbeing a row vector, resuling the same 1×Ndimension. Thus, we conclude the above partial derivative is correct. This derivative mirrors the relationship between the expected error and the way to adjust parameters so as to reduce the error. To understand why, imagine 2(y−xTβ)(−1) being the errors incurred by the current parameter configurations β and xT being the values of the input attributes. The resulting derivative equals to the error times the scales of each input attribute. Another way to make this point is: the contribution of error from each parameter βi has a monotonic relationship with the error 2(y−xTβ)(−1) as well as the scalar xT that was multiplied to each βi.
Now, let’s go back to the derivation. Because 2(y−xTβ)(−1) is 1×1, we can rewrite it with its transpose:
∂EPE(β)∂β=∫2(y−xTβ)T(−1)xTPr(dx,dy).
Solving ∂EPE(β)∂β=0 gives:
E[yTxT−βTxxT]=0E[βTxxT]=E[yTxT]E[xxTβ]=E[xy]β=E[xxT]−1E[xy].
5种方法推导Normal Equation的更多相关文章
- 机器学习入门:Linear Regression与Normal Equation -2017年8月23日22:11:50
本文会讲到: (1)另一种线性回归方法:Normal Equation: (2)Gradient Descent与Normal Equation的优缺点: 前面我们通过Gradient Desce ...
- 正规方程 Normal Equation
正规方程 Normal Equation 前几篇博客介绍了一些梯度下降的有用技巧,特征缩放(详见http://blog.csdn.net/u012328159/article/details/5103 ...
- machine learning (7)---normal equation相对于gradient descent而言求解linear regression问题的另一种方式
Normal equation: 一种用来linear regression问题的求解Θ的方法,另一种可以是gradient descent 仅适用于linear regression问题的求解,对其 ...
- coursera机器学习笔记-多元线性回归,normal equation
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...
- Normal Equation
一.Normal Equation 我们知道梯度下降在求解最优参数\(\theta\)过程中需要合适的\(\alpha\),并且需要进行多次迭代,那么有没有经过简单的数学计算就得到参数\(\theta ...
- Normal Equation Algorithm
和梯度下降法一样,Normal Equation(正规方程法)算法也是一种线性回归算法(Linear Regression Algorithm).与梯度下降法通过一步步计算来逐步靠近最佳θ值不同,No ...
- normal equation(正规方程)
normal equation(正规方程) 正规方程是通过求解下面的方程来找出使得代价函数最小的参数的: \[ \frac{\partial}{\partial\theta_j}J\left(\the ...
- YbSoftwareFactory 代码生成插件【二十五】:Razor视图中以全局方式调用后台方法输出页面代码的三种方法
上一篇介绍了 MVC中实现动态自定义路由 的实现,本篇将介绍Razor视图中以全局方式调用后台方法输出页面代码的三种方法. 框架最新的升级实现了一个页面部件功能,其实就是通过后台方法查询数据库内容,把 ...
- 去除inline-block元素间间距的N种方法
这篇文章发布于 2012年04月24日,星期二,22:38,归类于 css相关. 阅读 147771 次, 今日 52 次 by zhangxinxu from http://www.zhangxin ...
随机推荐
- std::vector 源代码
vector身为一个动态数组,每次以空间不够的时候会以2倍的倍数增加,而且每次扩充的时候分为3部,分配内存,拷贝数据,释放内存 vector内部有两个成员变量,begin,finish ,endcat ...
- java gui三个组件的使用
链接: http://blog.sina.com.cn/s/blog_614f347b0101egah.html 代码: import java.awt.*; import java.awt.even ...
- JS模块化写法
/* 模块化写法*/ var Person=function(){ var name='Jone', age='24', sex='male'; function createIdea(){ //{. ...
- http状态码及解释
简单版: 100 Continue 继续,一般在发送post请求时,已发送了http header之后服务端将返回此信息,表示确认,之后发送具体参数信息 200 OK 正常返回 ...
- 读书笔记 effective c++ Item 19 像设计类型(type)一样设计
1. 你需要重视类的设计 c++同其他面向对象编程语言一样,定义了一个新的类就相当于定义了一个新的类型(type),因此作为一个c++开发人员,大量时间会被花费在扩张你的类型系统上面.这意味着你不仅仅 ...
- 基于ES6模块标准通过webpack打包HTM5项目
本篇主要演示通过webpack打包phaser项目,webpack安装方法在此处就不一一赘述了 经常用phaser来写html5游戏的朋友可能会发现,当游戏场景比较多时,如果都写在一个js文件中那么将 ...
- MJRefresh在UITableView中的使用
前言 MJRefresh是一个好用的上下拉刷新的控件,github地址如下:https://github.com/CoderMJLee/MJRefresh 很多app都使用这个控件,我们也来了解一下它 ...
- 【Scala】Scala之Methods
一.前言 前面学习了Scala的Class,下面接着学习Method(方法). 二.Method Scala的方法与Java的方法类似,都是添加至类中的行为,但是在具体的实现细节上差异很大,下面展示一 ...
- 每天一个linux命令(38)--lsof 之FD文件描述符
一般lsof 会输出以下这些信息: COMMAND: 进程的名称 PID:进程标识符 PPID:父进程标识符(需要指定-R参数) USER:进程所有者 PGID:进程所属组 FD:文件描述符,应用程序 ...
- RAC之常用方法-----新手入门
年后换工作新入职,公司开发在使用RAC,之前居然一直没有了解过,独立开发的弊端,信息闭塞,而且自己也懒,这几天看了下RAC,确实很强大有木有. 什么是ARC 简单的说,RAC就是一个第三方库,他可以大 ...