混合高斯模型(Mixtures of Gaussians)和EM算法
这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation)。
与k-means一样,给定的训练样本是
,我们将隐含类别标签用
表示。与k-means的硬指定不同,我们首先认为
是满足一定的概率分布的,这里我们认为满足多项式分布,
,其中
,
有k个值{1,…,k}可以选取。而且我们认为在给定
后,
满足多值高斯分布,即
。由此可以得到联合分布
。
整个模型简单描述为对于每个样例
,我们先从k个类别中按多项式分布抽取一个
,然后根据
所对应的k个多值高斯分布中的一个生成样例
,。整个过程称作混合高斯模型。注意的是这里的
仍然是隐含随机变量。模型中还有三个变量
和
。最大似然估计为
。对数化后如下:

这个式子的最大值是不能通过前面使用的求导数为0的方法解决的,因为求的结果不是close form。但是假设我们知道了每个样例的
,那么上式可以简化为:

这时候我们再来对
和
进行求导得到:

就是样本类别中
的比率。
是类别为j的样本特征均值,
是类别为j的样例的特征的协方差矩阵。
实际上,当知道
后,最大似然估计就近似于高斯判别分析模型(Gaussian discriminant analysis model)了。所不同的是GDA中类别y是伯努利分布,而这里的z是多项式分布,还有这里的每个样例都有不同的协方差矩阵,而GDA中认为只有一个。
之前我们是假设给定了
,实际上
是不知道的。那么怎么办呢?考虑之前提到的EM的思想,第一步是猜测隐含类别变量z,第二步是更新其他参数,以获得最大的最大似然估计。用到这里就是:
|
循环下面步骤,直到收敛: { (E步)对于每一个i和j,计算
(M步),更新参数:
} |
在E步中,我们将其他参数
看作常量,计算
的后验概率,也就是估计隐含类别变量。估计好后,利用上面的公式重新计算其他参数,计算好后发现最大化最大似然估计时,
值又不对了,需要重新计算,周而复始,直至收敛。
的具体计算公式如下:

这个式子利用了贝叶斯公式。
这里我们使用
代替了前面的
,由简单的0/1值变成了概率值。
对比K-means可以发现,这里使用了“软”指定,为每个样例分配的类别
是有一定的概率的,同时计算量也变大了,每个样例i都要计算属于每一个类别j的概率。与K-means相同的是,结果仍然是局部最优解。对其他参数取不同的初始值进行多次计算不失为一种好方法。
混合高斯模型(Mixtures of Gaussians)和EM算法的更多相关文章
- 混合高斯模型的EM求解(Mixtures of Gaussians)及Python实现源代码
今天为大家带来混合高斯模型的EM推导求解过程. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveHVhbnl1YW5zZW4=/font/5a6L5L2T/ ...
- 混合高斯模型(Mixtures of Gaussians)
http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html 这篇讨论使用期望最大化算法(Expectation-Maximizat ...
- <转>与EM相关的两个算法-K-mean算法以及混合高斯模型
转自http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html http://www.cnblogs.com/jerrylead/ ...
- EM相关两个算法 k-mean算法和混合高斯模型
转自http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html http://www.cnblogs.com/jerrylead/ ...
- PRML读书会第九章 Mixture Models and EM(Kmeans,混合高斯模型,Expectation Maximization)
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:10:56 今天的主要内容有k-means.混合高斯模型. EM算法.对于k-me ...
- 记录:EM 算法估计混合高斯模型参数
当概率模型依赖于无法观测的隐性变量时,使用普通的极大似然估计法无法估计出概率模型中参数.此时需要利用优化的极大似然估计:EM算法. 在这里我只是想要使用这个EM算法估计混合高斯模型中的参数.由于直观原 ...
- EM算法与混合高斯模型
非常早就想看看EM算法,这个算法在HMM(隐马尔科夫模型)得到非常好的应用.这个算法公式太多就手写了这部分主体部分. 好的參考博客:最大似然预计到EM,讲了详细样例通熟易懂. JerryLead博客非 ...
- 混合高斯模型(GMM)推导及实现
作者:桂. 时间:2017-03-20 06:20:54 链接:http://www.cnblogs.com/xingshansi/p/6584555.html 声明:欢迎被转载,不过记得注明出处哦 ...
- [zz] 混合高斯模型 Gaussian Mixture Model
聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...
随机推荐
- 常用Linux操作指令
-------------------------------Linux目录------------------------------- /:根目录,一般根目录下只存放目录,在Linux下有且只有一 ...
- 如何编写更好的SQL查询:终极指南-第三部分
本次我们学习<如何编写更好的SQL查询>系列的最后一篇文章. 时间复杂度和大O符号 通过前两篇文章,我们已经对查询计划有了一定了解.接下来,我们还可以借助计算复杂度理论,来进一步深入地挖掘 ...
- java开发网易电话面试 一面总结
晚上八点多自己在看视频的时候突然接到杭州来的一个电话,当时觉得很奇怪,突兀,接通之后被告知是杭州网易打来的,没有简单的自我介绍,没有多余的废话,直接入主题,吓得我心里怪紧张的,完全没有准备,但是也没有 ...
- poj 3694双联通缩点+LCA
题意:给你一个无向连通图,每次加一条边后,问图中桥的数目. 思路:先将图进行双联通缩点,则缩点后图的边就是桥,然后dfs记录节点深度,给出(u,v)使其节点深度先降到同一等级,然后同时降等级直到汇合到 ...
- MIT6.828课程JOS在macOS下的环境配置
本文将介绍如何在macOS下配置MIT6.828 JOS实验的环境. 写JOS之前,在网上搜寻JOS的开发环境,很多博客和文章都提到"不是32位linux就不好配置,会浪费大量时间在配置环境 ...
- Android学习记录:界面设计
本片文章将记录进行android界面开发时积累的知识 包括 activity全屏 activity跳转 button设计 逐个输入编辑框设计 d0710 合并旧文章总结更新 d0721 添加内容 == ...
- 蓝桥杯试题利用数学知识经典解法,1.三个空瓶子换一瓶水;2.猜最后一个字母——猎八哥FLY
本博客为本人原创,转载请在醒目位置表明出处. 1.乐羊羊饮料厂正在举办一次促销优惠活动.乐羊羊C型饮料,凭3个瓶盖可以再换一瓶C型饮料,并且可以一直循环下 去,但不允许赊账.请你计算一下,如果小明不浪 ...
- MongoDB学习之路(三)
数据库 一个MongoDB可以建立多个数据库. MongoDB的默认数据库为"db",该数据库存储在data目录中. MongoDB的单个实例可以容纳多个独立的数据库,每一个都有自 ...
- JAVA基础第十组(5道题)
46.[程序46] 题目:两个字符串连接程序 package com.niit.homework1; import java.util.Scanner; /** * @author: Annie * ...
- 201521123018 《Java程序设计》第14周学习总结
1. 本章学习总结 2. 书面作业 1. MySQL数据库基本操作 建立数据库,将自己的姓名.学号作为一条记录插入.(截图,需出现自己的学号.姓名) 在自己建立的数据库上执行常见SQL语句(截图) 添 ...

