混合高斯模型(Mixtures of Gaussians)和EM算法
这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation)。
与k-means一样,给定的训练样本是
,我们将隐含类别标签用
表示。与k-means的硬指定不同,我们首先认为
是满足一定的概率分布的,这里我们认为满足多项式分布,
,其中
,
有k个值{1,…,k}可以选取。而且我们认为在给定
后,
满足多值高斯分布,即
。由此可以得到联合分布
。
整个模型简单描述为对于每个样例
,我们先从k个类别中按多项式分布抽取一个
,然后根据
所对应的k个多值高斯分布中的一个生成样例
,。整个过程称作混合高斯模型。注意的是这里的
仍然是隐含随机变量。模型中还有三个变量
和
。最大似然估计为
。对数化后如下:

这个式子的最大值是不能通过前面使用的求导数为0的方法解决的,因为求的结果不是close form。但是假设我们知道了每个样例的
,那么上式可以简化为:

这时候我们再来对
和
进行求导得到:

就是样本类别中
的比率。
是类别为j的样本特征均值,
是类别为j的样例的特征的协方差矩阵。
实际上,当知道
后,最大似然估计就近似于高斯判别分析模型(Gaussian discriminant analysis model)了。所不同的是GDA中类别y是伯努利分布,而这里的z是多项式分布,还有这里的每个样例都有不同的协方差矩阵,而GDA中认为只有一个。
之前我们是假设给定了
,实际上
是不知道的。那么怎么办呢?考虑之前提到的EM的思想,第一步是猜测隐含类别变量z,第二步是更新其他参数,以获得最大的最大似然估计。用到这里就是:
|
循环下面步骤,直到收敛: { (E步)对于每一个i和j,计算
(M步),更新参数:
} |
在E步中,我们将其他参数
看作常量,计算
的后验概率,也就是估计隐含类别变量。估计好后,利用上面的公式重新计算其他参数,计算好后发现最大化最大似然估计时,
值又不对了,需要重新计算,周而复始,直至收敛。
的具体计算公式如下:

这个式子利用了贝叶斯公式。
这里我们使用
代替了前面的
,由简单的0/1值变成了概率值。
对比K-means可以发现,这里使用了“软”指定,为每个样例分配的类别
是有一定的概率的,同时计算量也变大了,每个样例i都要计算属于每一个类别j的概率。与K-means相同的是,结果仍然是局部最优解。对其他参数取不同的初始值进行多次计算不失为一种好方法。
混合高斯模型(Mixtures of Gaussians)和EM算法的更多相关文章
- 混合高斯模型的EM求解(Mixtures of Gaussians)及Python实现源代码
今天为大家带来混合高斯模型的EM推导求解过程. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveHVhbnl1YW5zZW4=/font/5a6L5L2T/ ...
- 混合高斯模型(Mixtures of Gaussians)
http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html 这篇讨论使用期望最大化算法(Expectation-Maximizat ...
- <转>与EM相关的两个算法-K-mean算法以及混合高斯模型
转自http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html http://www.cnblogs.com/jerrylead/ ...
- EM相关两个算法 k-mean算法和混合高斯模型
转自http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html http://www.cnblogs.com/jerrylead/ ...
- PRML读书会第九章 Mixture Models and EM(Kmeans,混合高斯模型,Expectation Maximization)
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:10:56 今天的主要内容有k-means.混合高斯模型. EM算法.对于k-me ...
- 记录:EM 算法估计混合高斯模型参数
当概率模型依赖于无法观测的隐性变量时,使用普通的极大似然估计法无法估计出概率模型中参数.此时需要利用优化的极大似然估计:EM算法. 在这里我只是想要使用这个EM算法估计混合高斯模型中的参数.由于直观原 ...
- EM算法与混合高斯模型
非常早就想看看EM算法,这个算法在HMM(隐马尔科夫模型)得到非常好的应用.这个算法公式太多就手写了这部分主体部分. 好的參考博客:最大似然预计到EM,讲了详细样例通熟易懂. JerryLead博客非 ...
- 混合高斯模型(GMM)推导及实现
作者:桂. 时间:2017-03-20 06:20:54 链接:http://www.cnblogs.com/xingshansi/p/6584555.html 声明:欢迎被转载,不过记得注明出处哦 ...
- [zz] 混合高斯模型 Gaussian Mixture Model
聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...
随机推荐
- SVG视野
前面的话 SVG中坐标系统非常关键,但在介绍坐标系统之前,首先要了解视野.本文将详细介绍SVG视野 视野 下面来区分视窗.世界和视野 [视窗] SVG的属性width.height来控制视窗的大小,也 ...
- Ubuntu部署可视化爬虫Portia2.0环境
部署portia环境官方文档给出的方法太过简单,对于初学者来说是很难根据那一两行字成功部署portia环境的.对于部署portia这只可爱的爬虫的过程还是有很多坑的,主要写一篇portia2.0版本的 ...
- vue 父子组件传参
父向子组件传参 例子:App.vue为父,引入componetA组件之后,则可以在template中使用标签(注意驼峰写法要改成componet-a写法,因为html对大小写不敏感,component ...
- java对文件加锁
详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt208 在对文件操作过程中,有时候需要对文件进行加锁操作,防止其他线程访问该文 ...
- 201521123056 《Java程序设计》第3周学习总结
1. 本周学习总结 -本周学习了面向对象,学会了如何用Eclipse自动生成setter/getter/toString以及构造有参函数等 2. 书面作业 1.代码阅读 public class Te ...
- 201521123001《Java程序设计》第3周学习总结
1. 本周学习总结 2. 书面作业 1. 代码阅读 public class Test1 { private int i = 1;//这行不能修改 private static int j = 2; ...
- 二分求最长上升子序列 二分LIS
#include <iostream> #include <cstring> #define N 50010 using namespace std; int n; int n ...
- 前端angularJS利用directive实现移动端自定义软键盘的方法
最近公司项目的需求上要求我们iPad项目上一些需要输入数字的地方用我们自定义的软键盘而不是移动端设备自带的键盘,刚接到需求有点懵,因为之前没有做过,后来理了一下思路发现这东西也就那样.先看一下实现之后 ...
- JVM锁机制之synchronized
概述: synchronized是java用于处理多线程同步的一个关键字,用于标记一个方法/代码块,使之成为同步方法/同步块. 用synchronized可以避免多线程处理时的竞态条件问题. 相关概念 ...
- JSP获取Cookie对象
cookie是小段的文本信息,在网络服务器上生成,并发送给浏览器的.通过使用cookie可以标识用户身份,记录用户和密码,跟踪重复用户等.浏览器将cookie以key/value的形式保存到客户机的某 ...

