这篇随笔是对Wikipedia上 k-d tree 词条的摘录, 我认为对该词条解释相当生动详细, 是不可多得的好文.


Overview

A $k$-d tree (short for $k$-dimensional tree) is a binary space-partitioning tree for organizing points in a $k$-dimensional space. $k$-d trees are a useful data structure for searches involving a multidimensional search key.

Construction

The canonical method of $k$-d tree construction has the following constraints:

  • As one moves down the tree, one cycles through the axes used to select the splitting planes.
  • Points are inserted by selecting the median of the points being put into the subtree, with respect to their coordinates in the axis being used to create the splitting plane.

This method leads to a balanced $k$-d tree, in which each leaf node is approximately the same distance from the root. However, balanced trees are not necessarily optimal for all applications.

Nearest Neighboring Search

Terms:

  • the split dimensions
  • the splitting (hyper)plane
  • "current best"

The **nearest neighbour ** (NN) search algorithm aims to find the point in the tree that is nearest to a given point. This search can be done efficiently by using the tree properties to quickly eliminate large portions of the search space.

Searching for a nearest neighbour in a $k$-d tree proceeds as follows:

  1. Starting with the root node, the algorithm moves down the tree recursively.
  2. Once the algorithm reaches a leaf node, it saves that node point as "current best"
  3. The algorithm unwinds the recursion of the tree, performing the following steps at each node:
    1. If the current node is closer than the current best, then it becomes the current best.
    2. The algorithm checks whether there could be any points on the other side of the splitting plane that are closer to the search point than the current best. In concept, this is done by intersecting the splitting hyperplane with a hypersphere around the the search point that has a radius equal to the current nearest distance. Since the hyperplanes are all axis-aligned this is implemented as a simple comparison to see whether the distance between the splitting coordinate of the search point and current node is less than the distance (overall coordinates) from the search point to the current best.
      1. If the hypersphere crosses the plane, there could be nearer points on the other side of the plane, so the algorithm must move down the other branch of the tree from the current node looking for closer points, following the same recursive process as the entire search.
      2. If the hypersphere doesn't intersect the splitting plane, then the algorithm continues walking up the tree, and the entire branch on the other side of that node is eliminated.

Generally, the algorithm uses squared distances for comparison to avoid computing square roots. Additionally, it can save computation by holding the squared current best distance in a variable for computation.

The algorithm can be extended in several ways by simple modifications. If can provide the $k $ nearest neighbors to a point by maintaining $k$ current bests instead of just one. A branch is only eliminated when $k$ points have been found and the branch cannot have points closer than any of the $k$ current bests.

Implementation

$k$ 近临 ($k$NN)

#include <bits/stdc++.h>
#define lson id<<1
#define rson id<<1|1
#define sqr(x) (x)*(x)
using namespace std;
using LL=long long;
const int N=5e4+5; // K-D tree: a special case of binary space partitioning trees int DIM, idx; struct Node{
int key[5];
bool operator<(const Node &rhs)const{
return key[idx]<rhs.key[idx];
}
void read(){
for(int i=0; i<DIM; i++)
scanf("%d", key+i);
}
LL dis2(const Node &rhs)const{
LL res=0;
for(int i=0; i<DIM; i++)
res+=sqr(key[i]-rhs.key[i]);
return res;
}
void out(){
for(int i=0; i<DIM; i++)
printf("%d%c", key[i], i==DIM-1?'\n':' ');
}
}p[N]; Node a[N<<2]; // K-D tree
bool f[N<<2]; // [l, r)
void build(int id, int l, int r, int dep)
{
if(l==r) return; // error-prone
f[id]=true, f[lson]=f[rson]=false; // select axis based on depth so that axis cycles through all valid values
idx=dep%DIM;
int mid=l+r>>1; // sort point list and choose median as pivot element
nth_element(p+l, p+mid, p+r);
a[id]=p[mid];
build(lson, l, mid, dep+1);
build(rson, mid+1, r, dep+1);
} using P=pair<LL,Node>;
priority_queue<P> que; // multidimensional search key void query(const Node &p, int id, int m, int dep){
int dim=dep%DIM;
int x=lson, y=rson;
// left: <, right >=
if(p.key[dim]>=a[id].key[dim])
swap(x, y); if(f[x]) query(p, x, m, dep+1); P cur{p.dis2(a[id]), a[id]}; if(que.size()<m){
que.push(cur);
}
else if(cur.first<que.top().first){
que.pop();
que.push(cur);
}
if(f[y] && sqr(a[id].key[dim]-p.key[dim])<que.top().first)
query(p, y, m, dep+1);
}

说明:

  1. bool数组f[], 表示一个完全二叉树中的某个节点是否存在, 也可不用完全二叉树的表示法, 而用两个数组lson[]rson[]表示, 这样的好处还有: 节省空间, 数组可以只开到节点数的2倍.
  2. 区间采用左闭右开表示.

K-D Tree的更多相关文章

  1. 第46届ICPC澳门站 K - Link-Cut Tree // 贪心 + 并查集 + DFS

    原题链接:K-Link-Cut Tree_第46屆ICPC 東亞洲區域賽(澳門)(正式賽) (nowcoder.com) 题意: 要求一个边权值总和最小的环,并从小到大输出边权值(2的次幂):若不存在 ...

  2. AOJ DSL_2_C Range Search (kD Tree)

    Range Search (kD Tree) The range search problem consists of a set of attributed records S to determi ...

  3. Size Balance Tree(SBT模板整理)

    /* * tree[x].left 表示以 x 为节点的左儿子 * tree[x].right 表示以 x 为节点的右儿子 * tree[x].size 表示以 x 为根的节点的个数(大小) */ s ...

  4. HDU3333 Turing Tree(线段树)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=3333 Description After inventing Turing Tree, 3x ...

  5. POJ 3321 Apple Tree(树状数组)

                                                              Apple Tree Time Limit: 2000MS   Memory Lim ...

  6. CF 161D Distance in Tree 树形DP

    一棵树,边长都是1,问这棵树有多少点对的距离刚好为k 令tree(i)表示以i为根的子树 dp[i][j][1]:在tree(i)中,经过节点i,长度为j,其中一个端点为i的路径的个数dp[i][j] ...

  7. Segment Tree 扫描线 分类: ACM TYPE 2014-08-29 13:08 89人阅读 评论(0) 收藏

    #include<iostream> #include<cstdio> #include<algorithm> #define Max 1005 using nam ...

  8. Size Balanced Tree(SBT) 模板

    首先是从二叉搜索树开始,一棵二叉搜索树的定义是: 1.这是一棵二叉树: 2.令x为二叉树中某个结点上表示的值,那么其左子树上所有结点的值都要不大于x,其右子树上所有结点的值都要不小于x. 由二叉搜索树 ...

  9. hdu 5274 Dylans loves tree(LCA + 线段树)

    Dylans loves tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

随机推荐

  1. Chrome扩展开发之二——Chrome扩展中脚本的运行机制和通信方式

    目录: 0.Chrome扩展开发(Gmail附件管理助手)系列之〇——概述 1.Chrome扩展开发之一——Chrome扩展的文件结构 2.Chrome扩展开发之二——Chrome扩展中脚本的运行机制 ...

  2. lecture16-联合模型、分层坐标系、超参数优化及本课未来的探讨

    这是HInton的第16课,也是最后一课. 一.学习一个图像和标题的联合模型 在这部分,会介绍一些最近的在学习标题和描述图片的特征向量的联合模型上面的工作.在之前的lecture中,介绍了如何从图像中 ...

  3. 【跟着子迟品underscore】从用 `void 0` 代替 `undefined` 说起

    Why underscore 最近开始看 underscore源码,并将 underscore源码解读 放在了我的 2016计划 中. 阅读一些著名框架类库的源码,就好像和一个个大师对话,你会学到很多 ...

  4. Verilog代码规范I

    Verilog代码规范I "规范"这问题 "规范"这个富含专业气息的词汇(个人感觉),其实规范这种东西,就是大家都约定熟成的东西,一旦你不遵守这个东西,专业人士 ...

  5. java中的重绘

    void java.awt.Container.validate()Validates this container and all of its subcomponents.这个函数更新容器及其全部 ...

  6. Rectangles Area Sum

    #include<iostream> #include<stdio.h> #include<math.h> #include<string.h> #in ...

  7. C程序两则

    <span style="font-size:24px;">#include<iostream> using namespace std; int *fun ...

  8. windows server2008 r2 下启用 sqlserver 2008的远程连接

    首先说明,本文转自互联网. TMD 花了二天,终于找到怎么开启这个远程连接了.....娘的,累死了,写下来,希望能帮助同胞们... 用win server 2008 r2 和sql server 20 ...

  9. 将Extjs文件拷入eclipse工程下卡死问题

    主要是由于eclipse默认对js文件进行校验,ExtJS中js文件多且庞大造成电脑资源耗尽. 解决方法: 找到工作空间中项目文件夹下的.project文件,将 <buildCommand> ...

  10. Region-Based Segmentation

    读完10.4 Region-Based Segmentation这一小节, 新get到的且需要留意的知识点: Region Spltting and Merging, quadtrees Waters ...