这篇随笔是对Wikipedia上 k-d tree 词条的摘录, 我认为对该词条解释相当生动详细, 是不可多得的好文.


Overview

A $k$-d tree (short for $k$-dimensional tree) is a binary space-partitioning tree for organizing points in a $k$-dimensional space. $k$-d trees are a useful data structure for searches involving a multidimensional search key.

Construction

The canonical method of $k$-d tree construction has the following constraints:

  • As one moves down the tree, one cycles through the axes used to select the splitting planes.
  • Points are inserted by selecting the median of the points being put into the subtree, with respect to their coordinates in the axis being used to create the splitting plane.

This method leads to a balanced $k$-d tree, in which each leaf node is approximately the same distance from the root. However, balanced trees are not necessarily optimal for all applications.

Nearest Neighboring Search

Terms:

  • the split dimensions
  • the splitting (hyper)plane
  • "current best"

The **nearest neighbour ** (NN) search algorithm aims to find the point in the tree that is nearest to a given point. This search can be done efficiently by using the tree properties to quickly eliminate large portions of the search space.

Searching for a nearest neighbour in a $k$-d tree proceeds as follows:

  1. Starting with the root node, the algorithm moves down the tree recursively.
  2. Once the algorithm reaches a leaf node, it saves that node point as "current best"
  3. The algorithm unwinds the recursion of the tree, performing the following steps at each node:
    1. If the current node is closer than the current best, then it becomes the current best.
    2. The algorithm checks whether there could be any points on the other side of the splitting plane that are closer to the search point than the current best. In concept, this is done by intersecting the splitting hyperplane with a hypersphere around the the search point that has a radius equal to the current nearest distance. Since the hyperplanes are all axis-aligned this is implemented as a simple comparison to see whether the distance between the splitting coordinate of the search point and current node is less than the distance (overall coordinates) from the search point to the current best.
      1. If the hypersphere crosses the plane, there could be nearer points on the other side of the plane, so the algorithm must move down the other branch of the tree from the current node looking for closer points, following the same recursive process as the entire search.
      2. If the hypersphere doesn't intersect the splitting plane, then the algorithm continues walking up the tree, and the entire branch on the other side of that node is eliminated.

Generally, the algorithm uses squared distances for comparison to avoid computing square roots. Additionally, it can save computation by holding the squared current best distance in a variable for computation.

The algorithm can be extended in several ways by simple modifications. If can provide the $k $ nearest neighbors to a point by maintaining $k$ current bests instead of just one. A branch is only eliminated when $k$ points have been found and the branch cannot have points closer than any of the $k$ current bests.

Implementation

$k$ 近临 ($k$NN)

#include <bits/stdc++.h>
#define lson id<<1
#define rson id<<1|1
#define sqr(x) (x)*(x)
using namespace std;
using LL=long long;
const int N=5e4+5; // K-D tree: a special case of binary space partitioning trees int DIM, idx; struct Node{
int key[5];
bool operator<(const Node &rhs)const{
return key[idx]<rhs.key[idx];
}
void read(){
for(int i=0; i<DIM; i++)
scanf("%d", key+i);
}
LL dis2(const Node &rhs)const{
LL res=0;
for(int i=0; i<DIM; i++)
res+=sqr(key[i]-rhs.key[i]);
return res;
}
void out(){
for(int i=0; i<DIM; i++)
printf("%d%c", key[i], i==DIM-1?'\n':' ');
}
}p[N]; Node a[N<<2]; // K-D tree
bool f[N<<2]; // [l, r)
void build(int id, int l, int r, int dep)
{
if(l==r) return; // error-prone
f[id]=true, f[lson]=f[rson]=false; // select axis based on depth so that axis cycles through all valid values
idx=dep%DIM;
int mid=l+r>>1; // sort point list and choose median as pivot element
nth_element(p+l, p+mid, p+r);
a[id]=p[mid];
build(lson, l, mid, dep+1);
build(rson, mid+1, r, dep+1);
} using P=pair<LL,Node>;
priority_queue<P> que; // multidimensional search key void query(const Node &p, int id, int m, int dep){
int dim=dep%DIM;
int x=lson, y=rson;
// left: <, right >=
if(p.key[dim]>=a[id].key[dim])
swap(x, y); if(f[x]) query(p, x, m, dep+1); P cur{p.dis2(a[id]), a[id]}; if(que.size()<m){
que.push(cur);
}
else if(cur.first<que.top().first){
que.pop();
que.push(cur);
}
if(f[y] && sqr(a[id].key[dim]-p.key[dim])<que.top().first)
query(p, y, m, dep+1);
}

说明:

  1. bool数组f[], 表示一个完全二叉树中的某个节点是否存在, 也可不用完全二叉树的表示法, 而用两个数组lson[]rson[]表示, 这样的好处还有: 节省空间, 数组可以只开到节点数的2倍.
  2. 区间采用左闭右开表示.

K-D Tree的更多相关文章

  1. 第46届ICPC澳门站 K - Link-Cut Tree // 贪心 + 并查集 + DFS

    原题链接:K-Link-Cut Tree_第46屆ICPC 東亞洲區域賽(澳門)(正式賽) (nowcoder.com) 题意: 要求一个边权值总和最小的环,并从小到大输出边权值(2的次幂):若不存在 ...

  2. AOJ DSL_2_C Range Search (kD Tree)

    Range Search (kD Tree) The range search problem consists of a set of attributed records S to determi ...

  3. Size Balance Tree(SBT模板整理)

    /* * tree[x].left 表示以 x 为节点的左儿子 * tree[x].right 表示以 x 为节点的右儿子 * tree[x].size 表示以 x 为根的节点的个数(大小) */ s ...

  4. HDU3333 Turing Tree(线段树)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=3333 Description After inventing Turing Tree, 3x ...

  5. POJ 3321 Apple Tree(树状数组)

                                                              Apple Tree Time Limit: 2000MS   Memory Lim ...

  6. CF 161D Distance in Tree 树形DP

    一棵树,边长都是1,问这棵树有多少点对的距离刚好为k 令tree(i)表示以i为根的子树 dp[i][j][1]:在tree(i)中,经过节点i,长度为j,其中一个端点为i的路径的个数dp[i][j] ...

  7. Segment Tree 扫描线 分类: ACM TYPE 2014-08-29 13:08 89人阅读 评论(0) 收藏

    #include<iostream> #include<cstdio> #include<algorithm> #define Max 1005 using nam ...

  8. Size Balanced Tree(SBT) 模板

    首先是从二叉搜索树开始,一棵二叉搜索树的定义是: 1.这是一棵二叉树: 2.令x为二叉树中某个结点上表示的值,那么其左子树上所有结点的值都要不大于x,其右子树上所有结点的值都要不小于x. 由二叉搜索树 ...

  9. hdu 5274 Dylans loves tree(LCA + 线段树)

    Dylans loves tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

随机推荐

  1. Oracle 数据库日常巡检

    1. 检查数据库基本状况 包含:检查Oracle实例状态,检查Oracle服务进程,检查Oracle监听进程,共三个部分. 1.1. 检查Oracle实例状态 select instance_name ...

  2. WPF 3D模型 3D场景

    1.首先得说明的是这并不是真正的3D,模型被导出为一系列的单个图片,例如一个3D户型图,以某个视角旋转360°,渲染出一系列连续的单个图片文件. 2.在Image.MouseMove事件中添加相应代码 ...

  3. Android一键多渠道分发打包实战和解析

    当项目需要有更多的客户的时候,你就会考虑将apk上架到应用商店了,无奈天朝Android应用商店真的是百家争鸣,据某地不完全统计已经有900+.若将Apk上架到所有的应用商店是个好主意,但是据统计也就 ...

  4. jQuery api 快速参考[转]

    选择符 匹配 * 所有元素 #id 带有给定ID的元素 element 给定类型的所有元素,比如说html标签 .class 带有给定类的所有元素 a,b 匹配a或者匹配b的元素 a b 作为a后代的 ...

  5. (十一)外观模式详解(Service第三者插足,让action与dao分手)

    作者:zuoxiaolong8810(左潇龙),转载请注明出处,特别说明:本博文来自博主原博客,为保证新博客中博文的完整性,特复制到此留存,如需转载请注明新博客地址即可. 各位好,LZ今天给各位分享一 ...

  6. get_post

    各种http的请求协议: http://ymiter.iteye.com/blog/1922464 HTTP请求报文和HTTP响应报文 http://www.cnblogs.com/biyeymyhj ...

  7. SQL中的内连接与外连接

    关于关系代数连接运算的介绍请查看下面链接 http://www.cnblogs.com/xidongyu/articles/5980407.html 连接运算格式 链接运算由两部分构成:连接类型和连接 ...

  8. C#中快速释放内存,任务管理器可查证

    先close() 再dispose() 之后=null 最后GC.Collect() 如: ms.Close();//关闭流,并释放与之相关的资源 ms.Dispose();//如果是流的话,默认只会 ...

  9. 1031MVCC和事务浅析

    转自 http://blog.csdn.net/sofia1217/article/details/50778906 关于MVCC浅析,有些难度http://xuebinbin212.blog.163 ...

  10. wsdl说明书

    WSDL文档的结构实例解析 <?xml version="1.0" encoding="UTF-8"?> <definitions xmlns ...