[问题2014A02] 解答一(两次升阶法,由张钧瑞同学、董麒麟同学提供)
[问题2014A02] 解答一(两次升阶法,由张钧瑞同学、董麒麟同学提供)
将原行列式 \(|A|\) 升阶,考虑如下 \(n+1\) 阶行列式:
\[|B|=\begin{vmatrix} 1 & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 0 & 0 & a_1+a_2 & \cdots & a_1+a_{n-1} & a_1+a_n \\ 0 & a_2+a_1 & 0 & \cdots & a_2+a_{n-1} & a_2+a_n \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & a_{n-1}+a_1 & a_{n-1}+a_2 & \cdots & 0 & a_{n-1}+a_n \\ 0 & a_n+a_1 & a_n+a_2 & \cdots & a_n+a_{n-1} & 0 \end{vmatrix},\]
显然 \(|A|=|B|\). 将 \(|B|\) 的第一行分别加到余下的 \(n\) 行上,可得
\[|B|=\begin{vmatrix} 1 & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 1 & -a_1 & a_1 & \cdots & a_1 & a_1 \\ 1 & a_2 & -a_2 & \cdots & a_2 & a_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{n-1} & a_{n-1} & \cdots & -a_{n-1} & a_{n-1} \\ 1 & a_n & a_n & \cdots & a_n & -a_n \end{vmatrix}.\]
再次将上述行列式升阶,考虑如下 \(n+2\) 阶行列式:
\[|C|=\begin{vmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ -a_1 & 1 & -a_1 & a_1 & \cdots & a_1 & a_1 \\ -a_2 & 1 & a_2 & -a_2 & \cdots & a_2 & a_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -a_{n-1} & 1 & a_{n-1} & a_{n-1} & \cdots & -a_{n-1} & a_{n-1} \\ -a_n & 1 & a_n & a_n & \cdots & a_n & -a_n \end{vmatrix},\]
显然 \(|A|=|B|=|C|\). 将 \(|C|\) 的第一列分别加到最后的 \(n\) 列上,可得
\[|C|=\begin{vmatrix} 1 & 0 & 1 & 1 & \cdots & 1 & 1 \\ 0 & 1 & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ -a_1 & 1 & -2a_1 & 0 & \cdots & 0 & 0 \\ -a_2 & 1 & 0 & -2a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -a_{n-1} & 1 & 0 & 0 & \cdots & -2a_{n-1} & 0 \\ -a_n & 1 & 0 & 0 & \cdots & 0 & -2a_n \end{vmatrix}.\]
上述行列式是典型的爪型行列式 (参考高代白皮书第 6 页的例 1.2),只要利用非零主对角元将爪的一边消去,变成 (分块) 上 (下) 三角行列式即可求值出来了. 我们选择消去前两列的爪边. 在上述行列式中, 将第 \(i\) 列 (\(i=3,4,\cdots,n+2\)) 乘以 \(-\frac{1}{2}\) 都加到第一列上,再将第 \(i\) 列 (\(i=3,4,\cdots,n+2\)) 乘以 \(\frac{1}{2a_{i-2}}\) 都加到第二列上,可得
\[|C|=\begin{vmatrix} 1-\frac{n}{2} & \frac{T}{2} & 1 & 1 & \cdots & 1 & 1 \\ \frac{S}{2} & 1-\frac{n}{2} & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 0 & 0 & -2a_1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & -2a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -2a_{n-1} & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & -2a_n \end{vmatrix},\]
其中 \(S=a_1+a_2+\cdots+a_n\), \(T=\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}\). 注意到上述行列式是分块上三角行列式, 从而可得
\[|A|=|C|=(-2)^{n-2}\prod_{i=1}^na_i\bigg((n-2)^2-\Big(\sum_{i=1}^na_i\Big)\Big(\sum_{i=1}^n\frac{1}{a_i}\Big)\bigg). \quad\Box\]
[问题2014A02] 解答一(两次升阶法,由张钧瑞同学、董麒麟同学提供)的更多相关文章
- [问题2014A01] 解答三(升阶法,由董麒麟同学提供)
[问题2014A01] 解答三(升阶法,由董麒麟同学提供) 引入变量 \(y\),将 \(|A|\) 升阶,考虑如下行列式: \[|B|=\begin{vmatrix} 1 & x_1-a & ...
- [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)
[问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1) 当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...
- [问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供)
[问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供) 将行列式 \(|A|\) 的第二列,\(\cdots\),第 \(n\) 列全部加到第一列,可得 \[ |A|=\begin{vma ...
- [问题2014A02] 解答三(降阶公式法)
[问题2014A02] 解答三(降阶公式法) 将矩阵 \(A\) 写成如下形式: \[A=\begin{pmatrix} -2a_1 & 0 & \cdots & 0 & ...
- 编程算法 - 两个升序列的同样元素 代码(C)
两个升序列的同样元素 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 两个升序列的同样元素, 须要使用两个指针, 依次遍历, 假设相等输出, 假设小于或 ...
- 海选与包装,Python中常用的两个高阶函数(讲义)
一.filter(function, iterable) - 过滤("海选") # 判断落在第一象限的点[(x1, y1), (x2, y2)...] points = [(-1, ...
- 两次内存断点法寻找OEP
所谓“两次内存断点法寻找OEP”,按照<加密与解密*第三版>上的解释来说,就是这样的.一般的外壳会依次对.text..rdata..data..rsrc区块进行解压(解密)处理,所以,可以 ...
- ACM -- 算法小结(十)素数的两种打表法
素数的两种打表法 下面介绍两种素数打表法,由于是两年前留下的笔记,所以没有原创链接~~ @_@!! 第一种疯狂打表法: #include<stdio.h> #include<math ...
- sql的升阶
前言:基本数据库操作根本无法满足实际的需要,需要引入更多的操作. 触发器-隐式的,主动的,更新数据表中的信息.带有inserted和deleted两个临时表,代表新操作和旧操作. 它是一种特殊的存储过 ...
随机推荐
- 房间安排-nyoj168
描述 2010年上海世界博览会(Expo2010),是第41届世界博览会.于2010年5月1日至10月31日期间,在中国上海市举行.本次世博会也是由中国举办的首届世界博览会.上海世博会以“城市,让生活 ...
- 在 Django 模板中遍历复杂数据结构的关键是句点字符
在 Django 模板中遍历复杂数据结构的关键是句点字符 ( . ). 实例二 mysit/templates/myhtml2.html修改如下 <!DOCTYPE html> <h ...
- 实现服务器端与客户端的高频实时通信 SignalR(2)
说明:本篇文章与上篇文章 实现服务器端与客户端的实时通信 SignalR(1) 基本代码类似,只是做了些处理 高频 的改动. 一.本文出处:SignalR 实例介绍 (建议看原著里面有DEMO下载) ...
- Different Approaches for MVCC
https://www.enterprisedb.com/well-known-databases-use-different-approaches-mvcc Well-known Databases ...
- Redis配置文件(redis.conf)说明
Redis 配置 Redis 的配置文件位于 Redis 安装目录下,文件名为 redis.conf. 你可以通过 CONFIG 命令查看或设置配置项. 语法3> Redis CONFIG 命令 ...
- wireless tool 移植
在linux上调试wifi, 需要移植wireless tool进行验证,本文记录移植方法. 参考链接 http://www.cnblogs.com/zengjfgit/p/5601473.html ...
- WP8.1 windows phone 8.1 二次退出
public MainPage() { HardwareButtons.BackPressed += HardwareButtons_BackPressed; //注册后退键 } private vo ...
- Python基础(深、浅拷贝)
深.浅拷贝 基础:对象,引用,可变与可变 对于不可变的对象,如字符串.元组.数字深浅拷贝没有什么意义. 1.浅拷贝 浅拷贝只拷贝第一层对象(拷贝的实际是一个框子,拷贝过去的框子是不会变的,但是原先的框 ...
- 浏览器网页判断手机是否安装IOS/Android客户端程序
IOS 原理如下: 为HTML页面中的超链接点击事件增加一个setTimeout方法. 如果在iPhone上面500ms内,本机有应用程序能解析这个协议并打开程序,则这个回调方法失效: 如果本机没有应 ...
- Python 进程
安装Python的paramiko模块 步骤: 1:管理员方式打开cmd,切换到python安装路径的Scripts目录下: 2:执行命令: 1 pip3.5.exe install paramiko ...