[问题2014A02] 解答一(两次升阶法,由张钧瑞同学、董麒麟同学提供)

将原行列式 \(|A|\) 升阶,考虑如下 \(n+1\) 阶行列式:

\[|B|=\begin{vmatrix} 1 & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 0 & 0 & a_1+a_2 & \cdots & a_1+a_{n-1} & a_1+a_n \\ 0 & a_2+a_1 & 0 & \cdots & a_2+a_{n-1} & a_2+a_n \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & a_{n-1}+a_1 & a_{n-1}+a_2 & \cdots & 0 & a_{n-1}+a_n \\ 0 & a_n+a_1 & a_n+a_2 & \cdots & a_n+a_{n-1} & 0 \end{vmatrix},\]

显然 \(|A|=|B|\). 将 \(|B|\) 的第一行分别加到余下的 \(n\) 行上,可得

\[|B|=\begin{vmatrix} 1 & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 1 & -a_1 & a_1 & \cdots & a_1 & a_1 \\ 1 & a_2 & -a_2 & \cdots & a_2 & a_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{n-1} & a_{n-1} & \cdots & -a_{n-1} & a_{n-1} \\ 1 & a_n & a_n & \cdots & a_n & -a_n \end{vmatrix}.\]

再次将上述行列式升阶,考虑如下 \(n+2\) 阶行列式:

\[|C|=\begin{vmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ -a_1 & 1 & -a_1 & a_1 & \cdots & a_1 & a_1 \\ -a_2 & 1 & a_2 & -a_2 & \cdots & a_2 & a_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -a_{n-1} & 1 & a_{n-1} & a_{n-1} & \cdots & -a_{n-1} & a_{n-1} \\ -a_n & 1 & a_n & a_n & \cdots & a_n & -a_n \end{vmatrix},\]

显然 \(|A|=|B|=|C|\). 将 \(|C|\) 的第一列分别加到最后的 \(n\) 列上,可得

\[|C|=\begin{vmatrix} 1 & 0 & 1 & 1 & \cdots & 1 & 1 \\ 0 & 1 & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ -a_1 & 1 & -2a_1 & 0 & \cdots & 0 & 0 \\ -a_2 & 1 & 0 & -2a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -a_{n-1} & 1 & 0 & 0 & \cdots & -2a_{n-1} & 0 \\ -a_n & 1 & 0 & 0 & \cdots & 0 & -2a_n \end{vmatrix}.\]

上述行列式是典型的爪型行列式 (参考高代白皮书第 6 页的例 1.2),只要利用非零主对角元将爪的一边消去,变成 (分块) 上 (下) 三角行列式即可求值出来了. 我们选择消去前两列的爪边. 在上述行列式中, 将第 \(i\) 列 (\(i=3,4,\cdots,n+2\)) 乘以 \(-\frac{1}{2}\) 都加到第一列上,再将第 \(i\) 列 (\(i=3,4,\cdots,n+2\)) 乘以 \(\frac{1}{2a_{i-2}}\) 都加到第二列上,可得

\[|C|=\begin{vmatrix} 1-\frac{n}{2} & \frac{T}{2} & 1 & 1 & \cdots & 1 & 1 \\ \frac{S}{2} & 1-\frac{n}{2} & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 0 & 0 & -2a_1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & -2a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -2a_{n-1} & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & -2a_n \end{vmatrix},\]

其中 \(S=a_1+a_2+\cdots+a_n\), \(T=\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}\). 注意到上述行列式是分块上三角行列式, 从而可得

\[|A|=|C|=(-2)^{n-2}\prod_{i=1}^na_i\bigg((n-2)^2-\Big(\sum_{i=1}^na_i\Big)\Big(\sum_{i=1}^n\frac{1}{a_i}\Big)\bigg). \quad\Box\]

[问题2014A02] 解答一(两次升阶法,由张钧瑞同学、董麒麟同学提供)的更多相关文章

  1. [问题2014A01] 解答三(升阶法,由董麒麟同学提供)

    [问题2014A01] 解答三(升阶法,由董麒麟同学提供) 引入变量 \(y\),将 \(|A|\) 升阶,考虑如下行列式: \[|B|=\begin{vmatrix} 1 & x_1-a & ...

  2. [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)

    [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1)  当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...

  3. [问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供)

    [问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供) 将行列式 \(|A|\) 的第二列,\(\cdots\),第 \(n\) 列全部加到第一列,可得 \[ |A|=\begin{vma ...

  4. [问题2014A02] 解答三(降阶公式法)

    [问题2014A02] 解答三(降阶公式法) 将矩阵 \(A\) 写成如下形式: \[A=\begin{pmatrix} -2a_1 & 0 & \cdots & 0 & ...

  5. 编程算法 - 两个升序列的同样元素 代码(C)

    两个升序列的同样元素 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 两个升序列的同样元素, 须要使用两个指针, 依次遍历, 假设相等输出, 假设小于或 ...

  6. 海选与包装,Python中常用的两个高阶函数(讲义)

    一.filter(function, iterable) - 过滤("海选") # 判断落在第一象限的点[(x1, y1), (x2, y2)...] points = [(-1, ...

  7. 两次内存断点法寻找OEP

    所谓“两次内存断点法寻找OEP”,按照<加密与解密*第三版>上的解释来说,就是这样的.一般的外壳会依次对.text..rdata..data..rsrc区块进行解压(解密)处理,所以,可以 ...

  8. ACM -- 算法小结(十)素数的两种打表法

    素数的两种打表法 下面介绍两种素数打表法,由于是两年前留下的笔记,所以没有原创链接~~ @_@!! 第一种疯狂打表法: #include<stdio.h> #include<math ...

  9. sql的升阶

    前言:基本数据库操作根本无法满足实际的需要,需要引入更多的操作. 触发器-隐式的,主动的,更新数据表中的信息.带有inserted和deleted两个临时表,代表新操作和旧操作. 它是一种特殊的存储过 ...

随机推荐

  1. Web前端开发基础 第二天(各类标签)

    认识标签(第二部分): <ul> <li>信息</li> <li>信息</li> ...... </ul> <ol> ...

  2. 关闭SSMS的事务自动提交,改为手动提交

    SQLServer 2005-2008-2012使用Oracle时,默认是手动提交.而SQLServer2005中,默认是自动提交,但是SQLServer支持配置. 方法: 用SSMS连接到SQL S ...

  3. 【转】Eclipse 常用快捷键 (动画讲解)

    Eclipse有强大的编辑功能, 工欲善其事,必先利其器, 掌握Eclipse快捷键,可以大大提高工作效率. 小坦克我花了一整天时间, 精选了一些常用的快捷键操作,并且精心录制了动画, 让你一看就会. ...

  4. Linux内存管理基本概念

    1. 基本概念 1.1 地址 (1)逻辑地址:指由程序产生的与段相关的偏移地址部分.在C语言指针中,读取指针变量本身值(&操作),实际上这个值就是逻辑地址,它是相对于你当前进程数据段的地址.( ...

  5. php代码优化,mysql语句优化,面试需要用到的

    首先说个问题,就是这些所谓的优化其实代码标准化的建议,其实真算不上什么正真意义上的优化,还有一点需要指出的为了一丁点的性能优化,甚至在代码上的在一次请求上性能提升万分之一的所谓就去大面积改变代码习惯, ...

  6. iOS简易图片选择器 (图片可多选,仿微信)

    调用方法 NickyImagePickerViewController *pickerController = [[NickyImagePickerViewController alloc]init] ...

  7. INSTRUCTION EXECUTION CHARACTERISTICS

    Characteristics of Some CISCs, RISCs, and Superscalar Processors One of the most visible forms of ev ...

  8. json转换对象 对象属性首字母为大写会出错 可以用以下方法

    package open_exe; import net.sf.json.JSONObject; import net.sf.json.JsonConfig; import net.sf.json.u ...

  9. Sublime Text3 常用快捷键

    1. 更改变量名的几种方法 a.选中变量,ctrl+d 一个个选择 b.选中变量,alt+F3   2.查找打开过的文件:Ctrl+P,然后输入最近的文件名就可以即时预览到文件内容. 3.ctrl+r ...

  10. ansible使用笔记

    ansible使用笔记 介绍 ansible 是一个模型驱动的配置管理器,支持多节点发布.远程任务执行.默认使用 SSH 进行远程连接.无需在被管理节点上安装附加软件,可使用各种编程语言进行扩展.an ...