[问题2014A02] 解答一(两次升阶法,由张钧瑞同学、董麒麟同学提供)
[问题2014A02] 解答一(两次升阶法,由张钧瑞同学、董麒麟同学提供)
将原行列式 \(|A|\) 升阶,考虑如下 \(n+1\) 阶行列式:
\[|B|=\begin{vmatrix} 1 & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 0 & 0 & a_1+a_2 & \cdots & a_1+a_{n-1} & a_1+a_n \\ 0 & a_2+a_1 & 0 & \cdots & a_2+a_{n-1} & a_2+a_n \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & a_{n-1}+a_1 & a_{n-1}+a_2 & \cdots & 0 & a_{n-1}+a_n \\ 0 & a_n+a_1 & a_n+a_2 & \cdots & a_n+a_{n-1} & 0 \end{vmatrix},\]
显然 \(|A|=|B|\). 将 \(|B|\) 的第一行分别加到余下的 \(n\) 行上,可得
\[|B|=\begin{vmatrix} 1 & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 1 & -a_1 & a_1 & \cdots & a_1 & a_1 \\ 1 & a_2 & -a_2 & \cdots & a_2 & a_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{n-1} & a_{n-1} & \cdots & -a_{n-1} & a_{n-1} \\ 1 & a_n & a_n & \cdots & a_n & -a_n \end{vmatrix}.\]
再次将上述行列式升阶,考虑如下 \(n+2\) 阶行列式:
\[|C|=\begin{vmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ -a_1 & 1 & -a_1 & a_1 & \cdots & a_1 & a_1 \\ -a_2 & 1 & a_2 & -a_2 & \cdots & a_2 & a_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -a_{n-1} & 1 & a_{n-1} & a_{n-1} & \cdots & -a_{n-1} & a_{n-1} \\ -a_n & 1 & a_n & a_n & \cdots & a_n & -a_n \end{vmatrix},\]
显然 \(|A|=|B|=|C|\). 将 \(|C|\) 的第一列分别加到最后的 \(n\) 列上,可得
\[|C|=\begin{vmatrix} 1 & 0 & 1 & 1 & \cdots & 1 & 1 \\ 0 & 1 & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ -a_1 & 1 & -2a_1 & 0 & \cdots & 0 & 0 \\ -a_2 & 1 & 0 & -2a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -a_{n-1} & 1 & 0 & 0 & \cdots & -2a_{n-1} & 0 \\ -a_n & 1 & 0 & 0 & \cdots & 0 & -2a_n \end{vmatrix}.\]
上述行列式是典型的爪型行列式 (参考高代白皮书第 6 页的例 1.2),只要利用非零主对角元将爪的一边消去,变成 (分块) 上 (下) 三角行列式即可求值出来了. 我们选择消去前两列的爪边. 在上述行列式中, 将第 \(i\) 列 (\(i=3,4,\cdots,n+2\)) 乘以 \(-\frac{1}{2}\) 都加到第一列上,再将第 \(i\) 列 (\(i=3,4,\cdots,n+2\)) 乘以 \(\frac{1}{2a_{i-2}}\) 都加到第二列上,可得
\[|C|=\begin{vmatrix} 1-\frac{n}{2} & \frac{T}{2} & 1 & 1 & \cdots & 1 & 1 \\ \frac{S}{2} & 1-\frac{n}{2} & -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 0 & 0 & -2a_1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & -2a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -2a_{n-1} & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & -2a_n \end{vmatrix},\]
其中 \(S=a_1+a_2+\cdots+a_n\), \(T=\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}\). 注意到上述行列式是分块上三角行列式, 从而可得
\[|A|=|C|=(-2)^{n-2}\prod_{i=1}^na_i\bigg((n-2)^2-\Big(\sum_{i=1}^na_i\Big)\Big(\sum_{i=1}^n\frac{1}{a_i}\Big)\bigg). \quad\Box\]
[问题2014A02] 解答一(两次升阶法,由张钧瑞同学、董麒麟同学提供)的更多相关文章
- [问题2014A01] 解答三(升阶法,由董麒麟同学提供)
[问题2014A01] 解答三(升阶法,由董麒麟同学提供) 引入变量 \(y\),将 \(|A|\) 升阶,考虑如下行列式: \[|B|=\begin{vmatrix} 1 & x_1-a & ...
- [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)
[问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1) 当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...
- [问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供)
[问题2014A02] 解答二(求和法+拆分法,由张诚纯同学提供) 将行列式 \(|A|\) 的第二列,\(\cdots\),第 \(n\) 列全部加到第一列,可得 \[ |A|=\begin{vma ...
- [问题2014A02] 解答三(降阶公式法)
[问题2014A02] 解答三(降阶公式法) 将矩阵 \(A\) 写成如下形式: \[A=\begin{pmatrix} -2a_1 & 0 & \cdots & 0 & ...
- 编程算法 - 两个升序列的同样元素 代码(C)
两个升序列的同样元素 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 两个升序列的同样元素, 须要使用两个指针, 依次遍历, 假设相等输出, 假设小于或 ...
- 海选与包装,Python中常用的两个高阶函数(讲义)
一.filter(function, iterable) - 过滤("海选") # 判断落在第一象限的点[(x1, y1), (x2, y2)...] points = [(-1, ...
- 两次内存断点法寻找OEP
所谓“两次内存断点法寻找OEP”,按照<加密与解密*第三版>上的解释来说,就是这样的.一般的外壳会依次对.text..rdata..data..rsrc区块进行解压(解密)处理,所以,可以 ...
- ACM -- 算法小结(十)素数的两种打表法
素数的两种打表法 下面介绍两种素数打表法,由于是两年前留下的笔记,所以没有原创链接~~ @_@!! 第一种疯狂打表法: #include<stdio.h> #include<math ...
- sql的升阶
前言:基本数据库操作根本无法满足实际的需要,需要引入更多的操作. 触发器-隐式的,主动的,更新数据表中的信息.带有inserted和deleted两个临时表,代表新操作和旧操作. 它是一种特殊的存储过 ...
随机推荐
- HTML - 毛玻璃 滤镜 模糊
css 秘密花园 http://dabblet.com/gist/d9f243ddd7dbffa341a4 场景,背景图片 + 毛玻璃遮盖 原理:利用background的cover特性,将毛玻璃的区 ...
- HDU 1565&1569 方格取数系列(状压DP或者最大流)
方格取数(2) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- Nodejs开发(1.Sublime Text 3配置)
本例使用Sublime Text 3开发 原因: 1. 有开发提示: 2. 非常easy的调试运行: 下载Sublime Text 3,官网地址:http://www.sublimetext.com/ ...
- 如何保证App外包的最终质量,不延期不烂尾?
选择App外包服务的客户,最害怕的就是App项目延期甚至烂尾.投入了巨大的时间和财富,结果最后App无法上线. 解决这个问题有两个方法:第一,在选择公司前,先了解清楚有关App外包的一切问题,做到心里 ...
- 求文件的m至n行
#!/usr/bin/env python def read_file(file_name,start,stop): start_line = 0 try: with open(file_name) ...
- 使用maven来管理您的java项目
maven是一个项目管理工具,使用maven可以自动管理java项目的整个生命周期,包括编译.构建.测试.发布和报告等.在大型项目开发中,使用maven来管理是必不可少的. 一.安装maven 1.W ...
- 连接弹性和命令拦截的 ASP.NET MVC 应用程序中的实体框架
最近悟出来一个道理,在这儿分享给大家:学历代表你的过去,能力代表你的现在,学习代表你的将来. 十年河东十年河西,莫欺少年穷 学无止境,精益求精 上篇博客我们学习了EF 之 MVC 排序,查询,分 ...
- HtmlAgilityPack抓取搜房网数据简单示例
HtmlAgilityPack是一个开源的解析HTML元素的类库,最大的特点是可以通过XPath来解析HMTL,如果您以前用C#操作过XML,那么使用起HtmlAgilityPack也会得心应手.目前 ...
- c# signalr聊天室开源资料
SignalR+LayIM源码: http://www.cnblogs.com/panzi/p/5742089.html 钉钉客户端源码: http://www.cnblogs.com/loveson ...
- Linux下执行的java命令重定向到文件中的方法
在Linux下通常会执行如:java -version 的命令, 但是,命令只是打印到了屏幕上不能重定向到文件中或标准输出流中. 此时需要将错误输出流重定向到标准输出流中就可以得到了. 比如:java ...