Implement a data structure supporting the following operations:

Inc(Key) - Inserts a new key with value 1. Or increments an existing key by 1. Key is guaranteed to be a non-empty string.
Dec(Key) - If Key's value is 1, remove it from the data structure. Otherwise decrements an existing key by 1. If the key does not exist, this function does nothing. Key is guaranteed to be a non-empty string.
GetMaxKey() - Returns one of the keys with maximal value. If no element exists, return an empty string "".
GetMinKey() - Returns one of the keys with minimal value. If no element exists, return an empty string "".
Challenge: Perform all these in O(1) time complexity.

Solution: O(1) time complexity

解题思路主要参考了网友ivancjw的帖子,数据结构参考了https://discuss.leetcode.com/topic/65634/java-ac-all-strict-o-1-not-average-o-1-easy-to-read用bucket,思路是,我们建立一个次数分层的结构,次数多的在顶层,每一层放相同次数的key值,例如下面这个例子:

"A": 4, "B": 4, "C": 2, "D": 1

那么用我们设计的结构保存出来就是:

row0: val = 4, keys = {"A", "B"}
row1: val = 2, keys = {"C"}
row2: val = 1, keys = {"D"}

 public class AllOne {
public class Bucket {
int count;
Bucket prev;
Bucket next;
HashSet<String> keySet;
public Bucket(int num) {
this.count = num;
this.keySet = new HashSet<String>();
}
} Bucket head;
Bucket tail;
HashMap<String, Integer> keyCountMap;
HashMap<Integer, Bucket> countBucketMap; /** Initialize your data structure here. */
public AllOne() {
this.head = new Bucket(Integer.MIN_VALUE);
this.tail = new Bucket(Integer.MAX_VALUE);
head.next = tail;
tail.prev = head;
this.keyCountMap = new HashMap<String, Integer>();
this.countBucketMap = new HashMap<Integer, Bucket>();
} /** Inserts a new key <Key> with value 1. Or increments an existing key by 1. */
public void inc(String key) {
if (keyCountMap.containsKey(key)) {
change(key, 1);
}
else {
keyCountMap.put(key, 1);
if (head.next.count != 1) { //dont have the 1 bucket
addBucketAfter(new Bucket(1), head);
countBucketMap.put(1, head.next);
}
head.next.keySet.add(key);
}
} /** Decrements an existing key by 1. If Key's value is 1, remove it from the data structure. */
public void dec(String key) {
if (keyCountMap.containsKey(key)) {
int count = keyCountMap.get(key);
if (count == 1) {
keyCountMap.remove(key);
removeKeyFromBucket(countBucketMap.get(count), key);
}
else change(key, -1);
}
} /** Returns one of the keys with maximal value. */
public String getMaxKey() {
return tail.prev==head? "" : (String)tail.prev.keySet.iterator().next();
} /** Returns one of the keys with Minimal value. */
public String getMinKey() {
return head.next==tail? "" : (String)head.next.keySet.iterator().next();
} public void change(String key, int offset) {
//get count, update keyCountMap
int count = keyCountMap.get(key);
keyCountMap.put(key, count+offset); //get current bucket
Bucket curBucket = countBucketMap.get(count); //new bucket
Bucket newBucket;
if (countBucketMap.containsKey(count+offset)) {
newBucket = countBucketMap.get(count+offset);
}
else {
newBucket = new Bucket(count+offset);
countBucketMap.put(count+offset, newBucket);
addBucketAfter(newBucket, (offset==1? curBucket : curBucket.prev));
}
newBucket.keySet.add(key);
removeKeyFromBucket(curBucket, key);
} public void removeKeyFromBucket(Bucket cur, String key) {
cur.keySet.remove(key);
if (cur.keySet.size() == 0) {
removeBucketFromList(cur);
countBucketMap.remove(cur.count);
}
} public void removeBucketFromList(Bucket cur) {
cur.prev.next = cur.next;
cur.next.prev = cur.prev;
cur.next = null;
cur.prev = null;
} public void addBucketAfter(Bucket bucket, Bucket preBucket) {
bucket.prev = preBucket;
bucket.next = preBucket.next;
preBucket.next.prev = bucket;
preBucket.next = bucket;
}
} /**
* Your AllOne object will be instantiated and called as such:
* AllOne obj = new AllOne();
* obj.inc(key);
* obj.dec(key);
* String param_3 = obj.getMaxKey();
* String param_4 = obj.getMinKey();
*/

Solution 2: 如果不要求O(1)time, 这个用两个heap方法很常规

 public class AllOne {

     class Node{
String key;
int val;
public Node(String key, int val) {
this.key = key;
this.val = val;
}
}
/** Initialize your data structure here. */
HashMap<String, Node> map;
PriorityQueue<Node> minQ;
PriorityQueue<Node> maxQ;
public AllOne() {
map = new HashMap<String, Node>();
minQ = new PriorityQueue<Node>(new Comparator<Node>(){
public int compare(Node a, Node b) {
return a.val - b.val;
}
});
maxQ = new PriorityQueue<Node>(new Comparator<Node>(){
public int compare(Node a, Node b) {
return b.val - a.val;
}
});
} /** Inserts a new key <Key> with value 1. Or increments an existing key by 1. */
public void inc(String key) {
if (!map.containsKey(key)) {
map.put(key, new Node(key, 1));
Node node = map.get(key);
minQ.add(node);
maxQ.add(node);
} else {
Node node = map.get(key);
minQ.remove(node);
maxQ.remove(node);
node.val++;
map.put(key, node);
minQ.add(node);
maxQ.add(node);
}
} /** Decrements an existing key by 1. If Key's value is 1, remove it from the data structure. */
public void dec(String key) {
if (map.containsKey(key)) {
Node node = map.get(key);
if (node.val == 1) {
map.remove(key);
minQ.remove(node);
maxQ.remove(node);
} else {
minQ.remove(node);
maxQ.remove(node);
node.val--;
map.put(key, node);
minQ.add(node);
maxQ.add(node);
}
}
} /** Returns one of the keys with maximal value. */
public String getMaxKey() {
return maxQ.isEmpty() ? "" : maxQ.peek().key;
} /** Returns one of the keys with Minimal value. */
public String getMinKey() {
return minQ.isEmpty() ? "" : minQ.peek().key;
}
}

Leetcode: All O`one Data Structure的更多相关文章

  1. [LeetCode] All O`one Data Structure 全O(1)的数据结构

    Implement a data structure supporting the following operations: Inc(Key) - Inserts a new key with va ...

  2. [LeetCode] Two Sum III - Data structure design 两数之和之三 - 数据结构设计

    Design and implement a TwoSum class. It should support the following operations:add and find. add - ...

  3. LeetCode Two Sum III - Data structure design

    原题链接在这里:https://leetcode.com/problems/two-sum-iii-data-structure-design/ 题目: Design and implement a ...

  4. [LeetCode] Add and Search Word - Data structure design 添加和查找单词-数据结构设计

    Design a data structure that supports the following two operations: void addWord(word) bool search(w ...

  5. Java for LeetCode 211 Add and Search Word - Data structure design

    Design a data structure that supports the following two operations: void addWord(word)bool search(wo ...

  6. leetcode@ [211] Add and Search Word - Data structure design

    https://leetcode.com/problems/add-and-search-word-data-structure-design/ 本题是在Trie树进行dfs+backtracking ...

  7. leetcode面试准备:Add and Search Word - Data structure design

    leetcode面试准备:Add and Search Word - Data structure design 1 题目 Design a data structure that supports ...

  8. LeetCode 170. Two Sum III - Data structure design (两数之和之三 - 数据结构设计)$

    Design and implement a TwoSum class. It should support the following operations: add and find. add - ...

  9. 【LeetCode】170. Two Sum III – Data structure design

    Difficulty:easy  More:[目录]LeetCode Java实现 Description Design and implement a TwoSum class. It should ...

随机推荐

  1. url 转码

    //URL解码 //-(NSString *)URLDecodedString:(NSString *)str //{ // NSString *decodedString=(__bridge_tra ...

  2. window下 配置gitlab ssh非端口22端口

    git config --global user.name "jack" git config --global user.email "jackluo@xxx.com& ...

  3. GO语言练习:多返回值函数

    1.代码 2.运行 1.代码 package main import ( "fmt" "strconv" ) func getValue(n int) (flo ...

  4. 再谈Jquery Ajax方法传递到action

     原始出处 :http://cnn237111.blog.51cto.com/2359144/984466  本人只是转载 原文如下: 假设 controller中的方法是如下: public Act ...

  5. webservice的Axis2入门教程java版

    本文转自百度文库 Axis2是一套崭新的WebService引擎,该版本是对Axis1.x重新设计的产物.Axis2不仅支持SOAP1.1和SOAP1.2,还集成了非常流行的REST WebServi ...

  6. select在各个浏览器中的兼容性问题

    我们知道select标签在各个浏览器中的属性和各浏览器的支持各有些不同,从而造成select选择框在各浏览器的显示有不同. 下面我们通过对主要CSS属性的支持,打造全兼容select. 对select ...

  7. Handler消息传递机制

    引言: 出于性能优化考虑,Android的UI操作并不是线程安全的,这意味着如果有多个线程并发操作UI组件,可能导致线程安全问题. 为了解决这个问题,Android制定了一条简单的规则:只允许UI线程 ...

  8. TF-IDF算法

    转自:http://www.cnblogs.com/eyeszjwang/articles/2330094.html TF-IDF(term frequency–inverse document fr ...

  9. HDU1978 记忆化搜索

    How many ways Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  10. HDU3177 贪心

    Crixalis's Equipment Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...