题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=455

Due to the slow 'mod' and 'div' operations with int64 type, all Delphi solutions for the problem 455 (Sequence analysis) run much slower than the same code written in C++ or Java. We do not guarantee that Delphi solution exists. 

You are given a sequence of signed 64-bit integers defined as follows:

  • x0 = 1,
  • ,

where

mod

is a remainder operator. All arithmetic operations are evaluated without overflow checking. Use standard "remainder" operator for programming languages (it differs from the mathematical version; for example  in programming, while  in mathematics). Use "

long long

" type in C++, "

long

" in Java and "

int64

" in Delphi to store xi and all other values.

Let's call a sequence element xp repeatable if it occurs later in the sequence — meaning that there exists such qq > p, that xq = xp. The first repeatable element M of the sequence is such an element xm that xm is repeatable, and none of the xp where p < m are repeatable.

Given AB and C, your task is to find the index of the second occurence of the first repeatable element M in the sequence if the index is less or equal to 2 · 106. Per definition, the first element of the sequence has index 0.

Input

The only line of input contains three signed 64-bit integers: AB and C (B > 0, C > 0).

Output

Print a single integer  — the index of the second occurence of the first repeatable member if it is less or equal to 2 · 106. Print -1 if the index is more than 2 · 106.

题目大意:给出x[0] = 1,还有A、B、C,有x[i+1] = (A * x[i] + x[i] % B) % C。求第二个循环节出现的位置。

思路:http://en.wikipedia.org/wiki/Cycle_detection#Tortoise_and_hare (floyd判圈算法,龟兔算法?)

给一个初始值x[0],有一个函数x[i + 1] = f(x[i])。若x始终在有限集合中运算,那么这些x值会构成一个环。

在此题中,整数模一个C后,显然得到的值是有限的。

设第一个循环节从x[μ]开始,循环节长度为λ

那么对任意i = kλ ≥ μ,一定会有x[kλ] = x[kλ + kλ],即x[i] = x[2i]

于是我们可以用以下代码,找出满足x[v] = x[2v]的第一个ν,显然在[μ, μ + λ]间存在一个v = kλ,则此步复杂度为O(μ+λ)

    long long x = f(x0), y = f(f(x0));
int v = 1;
while(x != y)
x = f(x), y = f(f(y)), v++;

由于对任意i ≥ μ,有x[i] = x[i + λ] = x[i + kλ],那么同意有x[μ] = x[μ + λ] = x[μ + kλ] = x[μ + v]

在上面的代码中,我们已经求得了x[v],其中两个变量都等于x[v]

那么基于x[μ] = x[μ + v]的事实。我们可以用下面的代码,循环μ次,求出x[μ]

    x = x0;
int mu = 0;
while(x != y)
x = f(x), y = f(y), mu++;

上述代码已经求出μx[μ]。最后,只要再循环λ遍,即可求出循环节长度:

    int lam = 1;
y = f(x);
while(x != y) y = f(y), lam++;

总时间复杂度为O(μ+λ),空间复杂度为O(1)

对于本题,输出μ+λ即可。

至于本题的计算过程可能溢出的事情我没想……我发现大家都没管,我也不管了……

代码(312MS):

 #include <bits/stdc++.h>
using namespace std;
typedef long long LL; const int MAXR = 2e6; LL A, B, C; LL next(LL x) {
return (A * x + x % B) % C;
} int main() {
scanf("%I64d%I64d%I64d", &A, &B, &C);
LL x = next(), y = next(x);
int v = ;
while(v <= MAXR && x != y)
x = next(x), y = next(next(y)), v++;
if(v > MAXR) {
puts("-1");
return ;
} x = ;
int mu = ;
while(x != y)
x = next(x), y = next(y), mu++; int lam = ;
y = next(x);
while(mu + lam <= MAXR && x != y) y = next(y), lam++; if(mu + lam <= MAXR) printf("%d\n", mu + lam);
else puts("-1");
}

SGU 455 Sequence analysis(Cycle detection,floyd判圈算法)的更多相关文章

  1. Floyd判圈算法 Floyd Cycle Detection Algorithm

    2018-01-13 20:55:56 Floyd判圈算法(Floyd Cycle Detection Algorithm),又称龟兔赛跑算法(Tortoise and Hare Algorithm) ...

  2. Floyd判圈算法

    Floyd判圈算法 leetcode 上 编号为202 的happy number 问题,有点意思.happy number 的定义为: A happy number is a number defi ...

  3. leetcode202(Floyd判圈算法(龟兔赛跑算法))

    Write an algorithm to determine if a number is "happy". 写出一个算法确定一个数是不是快乐数. A happy number ...

  4. Floyd 判圈算法

    Floyd 判圈算法 摘自维基百科, LeetCode 上 141题 Linked List Cycle 用到这个, 觉得很有意思. 记录一下. 链接: https://zh.wikipedia.or ...

  5. UVA 11549 CALCULATOR CONUNDRUM(Floyd判圈算法)

    CALCULATOR CONUNDRUM   Alice got a hold of an old calculator that can display n digits. She was bore ...

  6. UVA 11549 Calculator Conundrum (Floyd判圈算法)

    题意:有个老式计算器,每次只能记住一个数字的前n位.现在输入一个整数k,然后反复平方,一直做下去,能得到的最大数是多少.例如,n=1,k=6,那么一次显示:6,3,9,1... 思路:这个题一定会出现 ...

  7. Codeforces Gym 101252D&&floyd判圈算法学习笔记

    一句话题意:x0=1,xi+1=(Axi+xi%B)%C,如果x序列中存在最早的两个相同的元素,输出第二次出现的位置,若在2e7内无解则输出-1. 题解:都不到100天就AFO了才来学这floyd判圈 ...

  8. Floyd判圈算法 UVA 11549 - Calculator Conundrum

    题意:给定一个数k,每次计算k的平方,然后截取最高的n位,然后不断重复这两个步骤,问这样可以得到的最大的数是多少? Floyd判圈算法:这个算法用在循环问题中,例如这个题目中,在不断重复中,一定有一个 ...

  9. UVa 11549 计算器谜题(Floyd判圈算法)

    https://vjudge.net/problem/UVA-11549 题意: 有一个老式计算器,只能显示n位数字,输入一个整数k,然后反复平方,如果溢出的话,计算器会显示结果的最高n位.如果一直这 ...

随机推荐

  1. 通过Ajax post Json类型的数据到Controller

    View function postSimpleData() { $.ajax({ type: "POST", url: "/Service/SimpleData&quo ...

  2. iOS 发布遇到的问题 (转载)

    1.ios图片命名Icon-120.png – 120×120 iphone & ipod touch(ios7)  http://blog.csdn.net/xyxjn/article/de ...

  3. Linux_awk命令详解

    什么是awk? 你可能对UNIX比较熟悉,但你可能对awk很陌生,这一点也不奇怪,的确,与其优秀的功能相比,awk还远没达到它应有的知名度.awk是什 么?与其它大多数UNIX命令不同的是,从名字上看 ...

  4. MongoDB设置访问权限、设置用户

    MongoDB已经使用很长一段时间了,基于MongoDB的数据存储也一直没有使用到权限访问(MongoDB默认设置为无权限访问限制),今天特地花了一点时间研究了一下,研究成果如下: 注:研究成果基于W ...

  5. mysql 存储过程 删除重复

    DELIMITER $$ CREATE PROCEDURE `delRepeatCA`() BEGIN DECLARE tally INT DEFAULT 0; SELECT COUNT(rs.c_C ...

  6. LruCache

    参考文章: LruCache源码解析

  7. [CareerCup] 15.2 Renting Apartment II 租房之二

    Write a SQL query to get a list of all buildings and the number of open requests (Requests in which ...

  8. 三种线程不安全现象描述(escaped state以及hidden mutable state)

    hidden mutable state和escaped state是两种线程不安全问题:两者原因不同,前者主要是由于类成员变量中含有其他对象的引用,而这个引用是immutable的:后者是成员方法的 ...

  9. Spring和Hibernate集成配置

    <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.spr ...

  10. Webform购物车(用Session存储,页面传值)

    购物车主要实现的功能: ①在主页面可以将所有商品显示出来,包括价格,库存. ②点击购买可以累加产品,如果是同一种产品,只会累加每种产品的数量. ③查看购物车,可以查看明细,包括所购物品的名称,价格,数 ...