HDU5834 Magic boy Bi Luo with his excited tree(树形DP)
题目
Source
http://acm.hdu.edu.cn/showproblem.php?pid=5834
Description
Bi Luo is a magic boy, he also has a migic tree, the tree has N nodes , in each node , there is a treasure, it's value is V[i], and for each edge, there is a cost C[i], which means every time you pass the edge i , you need to pay C[i].
You may attention that every V[i] can be taken only once, but for some C[i] , you may cost severial times.
Now, Bi Luo define ans[i] as the most value can Bi Luo gets if Bi Luo starts at node i.
Bi Luo is also an excited boy, now he wants to know every ans[i], can you help him?
Input
First line is a positive integer T(T≤104) , represents there are T test cases.
Four each test:
The first line contain an integer N(N≤105).
The next line contains N integers V[i], which means the treasure’s value of node i(1≤V[i]≤104).
For the next N−1 lines, each contains three integers u,v,c , which means node u and node v are connected by an edge, it's cost is c(1≤c≤104).
You can assume that the sum of N will not exceed 106.
Output
For the i-th test case , first output Case #i: in a single line , then output N lines , for the i-th line , output ans[i] in a single line.
Sample Input
1
5
4 1 7 7 7
1 2 6
1 3 1
2 4 8
3 5 2
Sample Output
Case #1:
15
10
14
9
15
分析
题目大概说给一棵树,点和边都有权值,经过一点可以加上该点的权值但最多只加一次,经过边会减去该边权值,问从各个点分别出发最多能获得多少权值。
这题是很裸的一种树形DP,做过类似HDU2196就知道怎么做了。两个DFS分别在O(n)处理出两种信息,各个结点往其为根的子树走的信息和各个结点往父亲走的信息,各个结点就能在O(1)合并这两个信息分别得出各个结点的最终信息。。
对于这题需要的状态是:
- dp_down[0/1][u]:u结点往其为根的子树走,并且不走回来/走回来,能得到的最大权值
- dp_up[0/1][u]:u结点往其父亲向上走,并且不走回来/走回来,能得到的最大权值
转移的话,想想就知道了。。dp_up[1][u]可以通过计算各个孩子信息的最大值和次大值求得,其他的比较简单,不过麻烦。。细节要注意,逻辑好考虑清楚。。比赛时我就没考虑好几个逻辑WA了,然后死活找不到错,还好队友A了。。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 111111 struct Edge{
int v,w,next;
}edge[MAXN<<1];
int NE,head[MAXN];
void addEdge(int u,int v,int w){
edge[NE].v=v; edge[NE].w=w; edge[NE].next=head[u];
head[u]=NE++;
} int val[MAXN];
int d_down[2][MAXN],d_up[2][MAXN]; void dfs1(int u,int fa){
d_down[0][u]=d_down[1][u]=val[u];
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(v==fa) continue;
dfs1(v,u);
if(d_down[0][v]-2*edge[i].w>0) d_down[0][u]+=d_down[0][v]-2*edge[i].w;
}
int mx=0;
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(v==fa) continue;
if(d_down[0][v]-2*edge[i].w>0){
mx=max(mx,(d_down[1][v]-edge[i].w)-(d_down[0][v]-2*edge[i].w));
}else{
mx=max(mx,d_down[1][v]-edge[i].w);
}
}
d_down[1][u]=d_down[0][u]+mx;
}
void dfs2(int u,int fa){ int mx1=0,mx2=0,tmp;
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(v==fa) continue;
if(d_down[0][v]-2*edge[i].w>0) tmp=(d_down[1][v]-edge[i].w)-(d_down[0][v]-2*edge[i].w);
else tmp=d_down[1][v]-edge[i].w;
if(mx1<tmp){
mx2=mx1;
mx1=tmp;
}else if(mx2<tmp){
mx2=tmp;
}
} for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(v==fa) continue; int tmp2;
if(d_down[0][v]-2*edge[i].w>0){
tmp2=d_down[0][u]-(d_down[0][v]-2*edge[i].w);
}else{
tmp2=d_down[0][u];
}
int mx=max(d_up[0][u]-2*edge[i].w,tmp2-2*edge[i].w);
mx=max(mx,d_up[0][u]+tmp2-2*edge[i].w-val[u]);
d_up[0][v]=val[v]+max(0,mx); if(d_down[0][v]-2*edge[i].w>0){
if(mx1==(d_down[1][v]-edge[i].w)-(d_down[0][v]-2*edge[i].w)) tmp=d_down[1][u]-(d_down[1][v]-edge[i].w)+mx2;
else tmp=d_down[1][u]-(d_down[0][v]-2*edge[i].w);
}else if(d_down[1][v]-edge[i].w>0){
if(mx1==d_down[1][v]-edge[i].w) tmp=d_down[1][u]-(d_down[1][v]-edge[i].w)+mx2;
else tmp=d_down[1][u];
}else tmp=d_down[1][u];
mx=max(d_up[1][u]-edge[i].w,tmp-edge[i].w);
mx=max(mx,max(d_up[0][u]+tmp-edge[i].w-val[u],d_up[1][u]+tmp2-edge[i].w-val[u]));
d_up[1][v]=val[v]+max(0,mx); dfs2(v,u);
}
} int main(){
int t;
scanf("%d",&t);
for(int cse=1; cse<=t; ++cse){
NE=0;
memset(head,-1,sizeof(head));
int n;
scanf("%d",&n);
for(int i=1; i<=n; ++i){
scanf("%d",val+i);
}
int a,b,c;
for(int i=1; i<n; ++i){
scanf("%d%d%d",&a,&b,&c);
addEdge(a,b,c);
addEdge(b,a,c);
}
dfs1(1,1);
d_up[0][1]=d_up[1][1]=val[1];
dfs2(1,1);
printf("Case #%d:\n",cse);
for(int i=1; i<=n; ++i){
printf("%d\n",max(d_up[0][i]+d_down[1][i],d_up[1][i]+d_down[0][i])-val[i]);
}
}
return 0;
}
HDU5834 Magic boy Bi Luo with his excited tree(树形DP)的更多相关文章
- hdu-5834 Magic boy Bi Luo with his excited tree(树形dp)
题目链接: Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others) Memory Limit: ...
- HDU5834 Magic boy Bi Luo with his excited tree (树形DP)
题意:一棵树有点权和边权 从每个点出发 走过一条边要花费边权同时可以获得点权 边走几次就算几次花费 点权最多算一次 问每个点能获得的最大价值 题解:好吧 这才叫树形DP入门题 dp[i][0]表示从i ...
- hdu 5834 Magic boy Bi Luo with his excited tree 树形dp+转移
Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 13107 ...
- 树形DP CCPC网络赛 HDU5834 Magic boy Bi Luo with his excited tree
// 树形DP CCPC网络赛 HDU5834 Magic boy Bi Luo with his excited tree // 题意:n个点的树,每个节点有权值为正,只能用一次,每条边有负权,可以 ...
- hdu5834 Magic boy Bi Luo with his excited tree 【树形dp】
题目链接 hdu5834 题解 思路很粗犷,实现很难受 设\(f[i][0|1]\)表示向子树走回来或不回来的最大收益 设\(g[i][0|1]\)表示向父亲走走回来或不回来的最大收益 再设\(h[i ...
- HDU5834Magic boy Bi Luo with his excited tree 树形dp
分析:典型的两遍dfs树形dp,先统计到子树的,再统计从祖先来的,dp[i][0]代表从从子树回来的最大值,dp[i][1]代表不回来,id[i]记录从i开始到哪不回来 吐槽:赛场上想到了状态,但是不 ...
- 2016中国大学生程序设计竞赛 - 网络选拔赛 C. Magic boy Bi Luo with his excited tree
Magic boy Bi Luo with his excited tree Problem Description Bi Luo is a magic boy, he also has a migi ...
- 动态规划(树形DP):HDU 5834 Magic boy Bi Luo with his excited tree
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA8UAAAJbCAIAAABCS6G8AAAgAElEQVR4nOy9fXQcxZ0uXH/hc8i5N+
- 【树形动规】HDU 5834 Magic boy Bi Luo with his excited tree
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5834 题目大意: 一棵N个点的有根树,每个节点有价值ci,每条树边有费用di,节点的值只能取一次,边 ...
随机推荐
- Ubuntu离线更新flashplugin
当网络太烂时,Ubuntu更新可能会卡在下载flashplugin上面,继而出错.在U论坛上找到一篇帖子,寻到成功安装flashplugin-installer的方法: 1.首先使用sudo apt- ...
- 开启后台 Service 闪退
04-29 15:36:23.395: E/ActivityThread(15275): Performing stop of activity that is not resumed: {com.e ...
- debug与release
因为在Debug中有ASSERT断言保护,所以要崩溃,而在Release优化中就会删掉ASSERT,所以会出现正常运行. void func() { char b[2]={0}; strc ...
- 与你相遇好幸运,Sail.js其他字段查询
query: function (req, res) { var par = req.query; for(var key in par){ var options = {}; ...
- 对Object类中方法的深入理解
看一下API中关于Object的介绍: 类 Object 是类层次结构的根类.每个类都使用 Object 作为超类.所有对象(包括数组)都实现这个类的方法. 那么Object中到底有哪些方法,各自有什 ...
- 在ubuntu上搭建开发环境10---英文版ubuntu安装中文输入法
之前安装 ubuntu时候选择安装英文版,但是在查资料的时候难免的要输入中文所以自己弄了一下中文输入法的安装 我安装的是fcitx小企鹅输入法 下面介绍一下安装的过程..... ubuntu默认的 ...
- .NET 在浏览器中下载TXT文件
通常我们用浏览器打开Txt文件时候,浏览器会直接打开,我们想要txt下载到本地该怎么操作,用js也可以,单不能兼容所有的浏览器,所以我们可以在服务端做处理,代码如下: //TXT文件生成页面 publ ...
- 【翻译十七】java-并发之高性能对象
High Level Concurrency Objects So far, this lesson has focused on the low-level APIs that have been ...
- 以16进制打印出一块内存buff
如下代码(支持windows与Linux)会以[16进制][每行16字节]打印出一块内存的内容: void PrintBuffer(void* pBuff, unsigned int nLen) { ...
- EMC DATA DOMAIN 2200 filesys destroy(數據清空及重建)
EMC 數據清空 1.數據清空 這裡會清空file system的所有東西包括tapes