HDU5834 Magic boy Bi Luo with his excited tree(树形DP)
题目
Source
http://acm.hdu.edu.cn/showproblem.php?pid=5834
Description
Bi Luo is a magic boy, he also has a migic tree, the tree has N nodes , in each node , there is a treasure, it's value is V[i], and for each edge, there is a cost C[i], which means every time you pass the edge i , you need to pay C[i].
You may attention that every V[i] can be taken only once, but for some C[i] , you may cost severial times.
Now, Bi Luo define ans[i] as the most value can Bi Luo gets if Bi Luo starts at node i.
Bi Luo is also an excited boy, now he wants to know every ans[i], can you help him?
Input
First line is a positive integer T(T≤104) , represents there are T test cases.
Four each test:
The first line contain an integer N(N≤105).
The next line contains N integers V[i], which means the treasure’s value of node i(1≤V[i]≤104).
For the next N−1 lines, each contains three integers u,v,c , which means node u and node v are connected by an edge, it's cost is c(1≤c≤104).
You can assume that the sum of N will not exceed 106.
Output
For the i-th test case , first output Case #i: in a single line , then output N lines , for the i-th line , output ans[i] in a single line.
Sample Input
1
5
4 1 7 7 7
1 2 6
1 3 1
2 4 8
3 5 2
Sample Output
Case #1:
15
10
14
9
15
分析
题目大概说给一棵树,点和边都有权值,经过一点可以加上该点的权值但最多只加一次,经过边会减去该边权值,问从各个点分别出发最多能获得多少权值。
这题是很裸的一种树形DP,做过类似HDU2196就知道怎么做了。两个DFS分别在O(n)处理出两种信息,各个结点往其为根的子树走的信息和各个结点往父亲走的信息,各个结点就能在O(1)合并这两个信息分别得出各个结点的最终信息。。
对于这题需要的状态是:
- dp_down[0/1][u]:u结点往其为根的子树走,并且不走回来/走回来,能得到的最大权值
- dp_up[0/1][u]:u结点往其父亲向上走,并且不走回来/走回来,能得到的最大权值
转移的话,想想就知道了。。dp_up[1][u]可以通过计算各个孩子信息的最大值和次大值求得,其他的比较简单,不过麻烦。。细节要注意,逻辑好考虑清楚。。比赛时我就没考虑好几个逻辑WA了,然后死活找不到错,还好队友A了。。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 111111 struct Edge{
int v,w,next;
}edge[MAXN<<1];
int NE,head[MAXN];
void addEdge(int u,int v,int w){
edge[NE].v=v; edge[NE].w=w; edge[NE].next=head[u];
head[u]=NE++;
} int val[MAXN];
int d_down[2][MAXN],d_up[2][MAXN]; void dfs1(int u,int fa){
d_down[0][u]=d_down[1][u]=val[u];
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(v==fa) continue;
dfs1(v,u);
if(d_down[0][v]-2*edge[i].w>0) d_down[0][u]+=d_down[0][v]-2*edge[i].w;
}
int mx=0;
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(v==fa) continue;
if(d_down[0][v]-2*edge[i].w>0){
mx=max(mx,(d_down[1][v]-edge[i].w)-(d_down[0][v]-2*edge[i].w));
}else{
mx=max(mx,d_down[1][v]-edge[i].w);
}
}
d_down[1][u]=d_down[0][u]+mx;
}
void dfs2(int u,int fa){ int mx1=0,mx2=0,tmp;
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(v==fa) continue;
if(d_down[0][v]-2*edge[i].w>0) tmp=(d_down[1][v]-edge[i].w)-(d_down[0][v]-2*edge[i].w);
else tmp=d_down[1][v]-edge[i].w;
if(mx1<tmp){
mx2=mx1;
mx1=tmp;
}else if(mx2<tmp){
mx2=tmp;
}
} for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(v==fa) continue; int tmp2;
if(d_down[0][v]-2*edge[i].w>0){
tmp2=d_down[0][u]-(d_down[0][v]-2*edge[i].w);
}else{
tmp2=d_down[0][u];
}
int mx=max(d_up[0][u]-2*edge[i].w,tmp2-2*edge[i].w);
mx=max(mx,d_up[0][u]+tmp2-2*edge[i].w-val[u]);
d_up[0][v]=val[v]+max(0,mx); if(d_down[0][v]-2*edge[i].w>0){
if(mx1==(d_down[1][v]-edge[i].w)-(d_down[0][v]-2*edge[i].w)) tmp=d_down[1][u]-(d_down[1][v]-edge[i].w)+mx2;
else tmp=d_down[1][u]-(d_down[0][v]-2*edge[i].w);
}else if(d_down[1][v]-edge[i].w>0){
if(mx1==d_down[1][v]-edge[i].w) tmp=d_down[1][u]-(d_down[1][v]-edge[i].w)+mx2;
else tmp=d_down[1][u];
}else tmp=d_down[1][u];
mx=max(d_up[1][u]-edge[i].w,tmp-edge[i].w);
mx=max(mx,max(d_up[0][u]+tmp-edge[i].w-val[u],d_up[1][u]+tmp2-edge[i].w-val[u]));
d_up[1][v]=val[v]+max(0,mx); dfs2(v,u);
}
} int main(){
int t;
scanf("%d",&t);
for(int cse=1; cse<=t; ++cse){
NE=0;
memset(head,-1,sizeof(head));
int n;
scanf("%d",&n);
for(int i=1; i<=n; ++i){
scanf("%d",val+i);
}
int a,b,c;
for(int i=1; i<n; ++i){
scanf("%d%d%d",&a,&b,&c);
addEdge(a,b,c);
addEdge(b,a,c);
}
dfs1(1,1);
d_up[0][1]=d_up[1][1]=val[1];
dfs2(1,1);
printf("Case #%d:\n",cse);
for(int i=1; i<=n; ++i){
printf("%d\n",max(d_up[0][i]+d_down[1][i],d_up[1][i]+d_down[0][i])-val[i]);
}
}
return 0;
}
HDU5834 Magic boy Bi Luo with his excited tree(树形DP)的更多相关文章
- hdu-5834 Magic boy Bi Luo with his excited tree(树形dp)
题目链接: Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others) Memory Limit: ...
- HDU5834 Magic boy Bi Luo with his excited tree (树形DP)
题意:一棵树有点权和边权 从每个点出发 走过一条边要花费边权同时可以获得点权 边走几次就算几次花费 点权最多算一次 问每个点能获得的最大价值 题解:好吧 这才叫树形DP入门题 dp[i][0]表示从i ...
- hdu 5834 Magic boy Bi Luo with his excited tree 树形dp+转移
Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 13107 ...
- 树形DP CCPC网络赛 HDU5834 Magic boy Bi Luo with his excited tree
// 树形DP CCPC网络赛 HDU5834 Magic boy Bi Luo with his excited tree // 题意:n个点的树,每个节点有权值为正,只能用一次,每条边有负权,可以 ...
- hdu5834 Magic boy Bi Luo with his excited tree 【树形dp】
题目链接 hdu5834 题解 思路很粗犷,实现很难受 设\(f[i][0|1]\)表示向子树走回来或不回来的最大收益 设\(g[i][0|1]\)表示向父亲走走回来或不回来的最大收益 再设\(h[i ...
- HDU5834Magic boy Bi Luo with his excited tree 树形dp
分析:典型的两遍dfs树形dp,先统计到子树的,再统计从祖先来的,dp[i][0]代表从从子树回来的最大值,dp[i][1]代表不回来,id[i]记录从i开始到哪不回来 吐槽:赛场上想到了状态,但是不 ...
- 2016中国大学生程序设计竞赛 - 网络选拔赛 C. Magic boy Bi Luo with his excited tree
Magic boy Bi Luo with his excited tree Problem Description Bi Luo is a magic boy, he also has a migi ...
- 动态规划(树形DP):HDU 5834 Magic boy Bi Luo with his excited tree
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA8UAAAJbCAIAAABCS6G8AAAgAElEQVR4nOy9fXQcxZ0uXH/hc8i5N+
- 【树形动规】HDU 5834 Magic boy Bi Luo with his excited tree
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5834 题目大意: 一棵N个点的有根树,每个节点有价值ci,每条树边有费用di,节点的值只能取一次,边 ...
随机推荐
- WaxPatch中demo注意问题
问题一 https://github.com/mmin18/WaxPatch网址中提供的demo是可以运行,但是存在一个问题,如果把patch.zip换成自己的并且上传到自己的服务器(github), ...
- [Android Pro] Gradle tip #3-Task顺序
reference to : http://blog.csdn.net/lzyzsd/article/details/46935405 原文链接 我注意到我在使用Gradle的时候遇到的大多数问题都是 ...
- 中文和unicode互转
public class Test { public static void main(String[] args) { String uname="欧阳红"; for (int ...
- java删除被占用的文件
boolean result = f.delete();//判断是否删除完毕 if(!result) { System.gc();//系统进行资源强制回收 f.delete; }
- 【数据库】 Sqlserver 2008 error 40出现连接错误的解决方法
经常要连接到远程数据库上,因此常常碰到这个错误,然后又屡次忘记解决方法,所以今天坐下笔迹,好下次能快速回忆起来. 一.首先检查数据库的TCP/TP是否启动 1.启动Sql server配置管理器 2. ...
- forEach 方法 (Array) (JavaScript)
为数组中的每个元素执行指定操作. 语法 array1.forEach(callbackfn[, thisArg]) 参数 参数 定义 array1 必选.一个数组对象. callbackfn 必选.最 ...
- lvs+keepalived 负载均衡
LVS是一个开源的软件,可以实现LINUX平台下的简单负载均衡.LVS是Linux Virtual Server的缩写,意思是Linux虚拟服务器.目前有三种IP负 载均衡技术(VS/NAT.VS/T ...
- php几个常用的概率算法(抽奖、广告首选)
做网站类的有时会弄个活动什么的,来让用户参加,既吸引用户注册,又提高网站的用户活跃度.同时参加的用户会获得一定的奖品,有100%中奖的,也有按一定概率中奖的,大的比如中个ipad.iphone5,小的 ...
- 在ASP.NET Core 1.0中如何发送邮件
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:目前.NET Core 1.0中并没有提供SMTP相关的类库,那么要如何从ASP.NE ...
- servlet、genericservlet、httpservlet之间的区别
转自:http://blog.csdn.net/rat9912345/article/details/5161789 当编写一个servlet时,必须直接或间接实现servlet接口,最可能实现的方法 ...