# -*- coding: utf-8 -*-
"""
Created on Sun Nov 13 09:14:13 2016 @author: daxiong
"""
from nltk.corpus import stopwords
from nltk.tokenize import sent_tokenize,word_tokenize #英文停止词,set()集合函数消除重复项
list_stopWords=list(set(stopwords.words('english')))
example_text="Five score years ago, a great American, in whose symbolic shadow we stand today, signed the Emancipation Proclamation. This momentous decree came as a great beacon light of hope to millions of Negro slaves who had been seared in the flames of withering injustice. It came as a joyous daybreak to end the long night of bad captivity."
#分句
list_sentences=sent_tokenize(example_text)
#分词
list_words=word_tokenize(example_text)
#过滤停止词
filtered_words=[w for w in list_words if not w in list_stopWords]

Stop words with NLTK

The idea of Natural Language Processing is to do some form of
analysis, or processing, where the machine can understand, at least to
some level, what the text means, says, or implies.

This is an obviously massive challenge, but there are steps to
doing it that anyone can follow. The main idea, however, is that
computers simply do not, and will not, ever understand words directly.
Humans don't either *shocker*. In humans, memory is broken down into
electrical signals in the brain, in the form of neural groups that fire
in patterns. There is a lot about the brain that remains unknown, but,
the more we break down the human brain to the basic elements, we find
out basic the elements really are. Well, it turns out computers store
information in a very similar way! We need a way to get as close to that
as possible if we're going to mimic how humans read and understand
text. Generally, computers use numbers for everything, but we often see
directly in programming where we use binary signals (True or False,
which directly translate to 1 or 0, which originates directly from
either the presence of an electrical signal (True, 1), or not (False,
0)). To do this, we need a way to convert words to values, in numbers,
or signal patterns. The process of converting data to something a
computer can understand is referred to as "pre-processing." One of the
major forms of pre-processing is going to be filtering out useless data.
In natural language processing, useless words (data), are referred to
as stop words.

Immediately, we can recognize ourselves that some words carry more
meaning than other words. We can also see that some words are just
plain useless, and are filler words. We use them in the English
language, for example, to sort of "fluff" up the sentence so it is not
so strange sounding. An example of one of the most common, unofficial,
useless words is the phrase "umm." People stuff in "umm" frequently,
some more than others. This word means nothing, unless of course we're
searching for someone who is maybe lacking confidence, is confused, or
hasn't practiced much speaking. We all do it, you can hear me saying
"umm" or "uhh" in the videos plenty of ...uh ... times. For most
analysis, these words are useless.

We would not want these words taking up space in our database, or
taking up valuable processing time. As such, we call these words "stop
words" because they are useless, and we wish to do nothing with them.
Another version of the term "stop words" can be more literal: Words we
stop on.

For example, you may wish to completely cease analysis if you
detect words that are commonly used sarcastically, and stop immediately.
Sarcastic words, or phrases are going to vary by lexicon and corpus.
For now, we'll be considering stop words as words that just contain no
meaning, and we want to remove them.

You can do this easily, by storing a list of words that you
consider to be stop words. NLTK starts you off with a bunch of words
that they consider to be stop words, you can access it via the NLTK
corpus with:

from nltk.corpus import stopwords

Here is the list:

>>> set(stopwords.words('english'))
{'ourselves', 'hers', 'between', 'yourself', 'but', 'again', 'there',
'about', 'once', 'during', 'out', 'very', 'having', 'with', 'they',
'own', 'an', 'be', 'some', 'for', 'do', 'its', 'yours', 'such', 'into',
'of', 'most', 'itself', 'other', 'off', 'is', 's', 'am', 'or', 'who',
'as', 'from', 'him', 'each', 'the', 'themselves', 'until', 'below',
'are', 'we', 'these', 'your', 'his', 'through', 'don', 'nor', 'me',
'were', 'her', 'more', 'himself', 'this', 'down', 'should', 'our',
'their', 'while', 'above', 'both', 'up', 'to', 'ours', 'had', 'she',
'all', 'no', 'when', 'at', 'any', 'before', 'them', 'same', 'and',
'been', 'have', 'in', 'will', 'on', 'does', 'yourselves', 'then',
'that', 'because', 'what', 'over', 'why', 'so', 'can', 'did', 'not',
'now', 'under', 'he', 'you', 'herself', 'has', 'just', 'where', 'too',
'only', 'myself', 'which', 'those', 'i', 'after', 'few', 'whom', 't',
'being', 'if', 'theirs', 'my', 'against', 'a', 'by', 'doing', 'it',
'how', 'further', 'was', 'here', 'than'}

Here is how you might incorporate using the stop_words set to remove the stop words from your text:

from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize example_sent = "This is a sample sentence, showing off the stop words filtration." stop_words = set(stopwords.words('english')) word_tokens = word_tokenize(example_sent) filtered_sentence = [w for w in word_tokens if not w in stop_words] filtered_sentence = [] for w in word_tokens:
if w not in stop_words:
filtered_sentence.append(w) print(word_tokens)
print(filtered_sentence)

Our output here:
['This', 'is', 'a', 'sample', 'sentence', ',', 'showing', 'off', 'the', 'stop', 'words', 'filtration', '.']
['This', 'sample', 'sentence', ',', 'showing', 'stop', 'words', 'filtration', '.']

Our database thanks us. Another form of data pre-processing is 'stemming,' which is what we're going to be talking about next.

 

自然语言13_Stop words with NLTK的更多相关文章

  1. 自然语言处理(1)之NLTK与PYTHON

    自然语言处理(1)之NLTK与PYTHON 题记: 由于现在的项目是搜索引擎,所以不由的对自然语言处理产生了好奇,再加上一直以来都想学Python,只是没有机会与时间.碰巧这几天在亚马逊上找书时发现了 ...

  2. 自然语言23_Text Classification with NLTK

    QQ:231469242 欢迎喜欢nltk朋友交流 https://www.pythonprogramming.net/text-classification-nltk-tutorial/?compl ...

  3. 自然语言20_The corpora with NLTK

    QQ:231469242 欢迎喜欢nltk朋友交流 https://www.pythonprogramming.net/nltk-corpus-corpora-tutorial/?completed= ...

  4. 自然语言19.1_Lemmatizing with NLTK(单词变体还原)

    QQ:231469242 欢迎喜欢nltk朋友交流 https://www.pythonprogramming.net/lemmatizing-nltk-tutorial/?completed=/na ...

  5. 自然语言14_Stemming words with NLTK

    https://www.pythonprogramming.net/stemming-nltk-tutorial/?completed=/stop-words-nltk-tutorial/ # -*- ...

  6. 自然语言处理2.1——NLTK文本语料库

    1.获取文本语料库 NLTK库中包含了大量的语料库,下面一一介绍几个: (1)古腾堡语料库:NLTK包含古腾堡项目电子文本档案的一小部分文本.该项目目前大约有36000本免费的电子图书. >&g ...

  7. python自然语言处理函数库nltk从入门到精通

    1. 关于Python安装的补充 若在ubuntu系统中同时安装了Python2和python3,则输入python或python2命令打开python2.x版本的控制台:输入python3命令打开p ...

  8. Python自然语言处理实践: 在NLTK中使用斯坦福中文分词器

    http://www.52nlp.cn/python%E8%87%AA%E7%84%B6%E8%AF%AD%E8%A8%80%E5%A4%84%E7%90%86%E5%AE%9E%E8%B7%B5-% ...

  9. 推荐《用Python进行自然语言处理》中文翻译-NLTK配套书

    NLTK配套书<用Python进行自然语言处理>(Natural Language Processing with Python)已经出版好几年了,但是国内一直没有翻译的中文版,虽然读英文 ...

随机推荐

  1. redis在window环境下的安装

    1.下载客户端文件 地址:https://github.com/dmajkic/redis/downloads 客户端文件目录说明: 2.启动redis服务端 1.在客户端文件目录下新建一个bat文件 ...

  2. javascript 红宝书笔记之数据类型

      typeof   检测给定变量的数据类型,通过typeof来区分函数和其它对象   var message = 'some string'; console.log(typeof(message) ...

  3. Entity Framework Code First (一)Conventions

    Entity Framework 简言之就是一个ORM(Object-Relational Mapper)框架. Code First 使得你能够通过C#的类来描述一个模型,模型如何被发现/检测就是通 ...

  4. 用CSS和jQuery制作简单的下拉框

    请选择 百度 谷歌 雅虎 新浪 dowebok 代码 素材 模板 教程 示例下载 // li', function() { var parent = $(this).closest('.select' ...

  5. REST服务返回自定义的HttpResponseMessage

    WebApi框架中对资源的操作,都是通过其Controller提供的各种方法(GET,POST,PUT,DELET等)来实现,而这些方法的返回信息有以下几种形式: 方法返回类型 HttpRespons ...

  6. 提供RESTful服务

    RESTful广泛运用于互联网服务,而在企业应用中,大部分场景仍然是RPC服务,这是由于企业应用的业务复杂性造成的.但是基于SOAP的RPC服务也存在很多的弊端,比如服务异步处理比较麻烦,大部分RPC ...

  7. Canvas是什么

    Canvas 是通过 JavaScript 来绘制 2D 图形,是 HTML 5 中新增的元素. Canvas 有如下特点: 绘制的是位图,图像放大后会失真. 不支持事件处理器. 能够以 .png 或 ...

  8. CSS实现兼容性的渐变背景(gradient)效果

    利用css 3实现渐变可以很方便的更改它的颜色,并且能够减少图片的制作,但是它的兼容性并不好,下面的代码就是实现利用css 渐变兼容的代码: .gradient{ width:300px; heigh ...

  9. IE6、IE7、IE8的CSS、JS兼容

    Internet Explorer 6中查看使用 Microsoft JScript 的网页,可能会遇到web浏览器速度较慢的性能问题.原因是如果js脚本同时创建大量变量,jscript引擎执行垃圾收 ...

  10. 【POJ 1679】The Unique MST(次小生成树)

    找出最小生成树,同时用Max[i][j]记录i到j的唯一路径上最大边权.然后用不在最小生成树里的边i-j来替换,看看是否差值为0. #include <algorithm> #includ ...