题目链接

题意:两个队伍,有一些边相连,问最大组对数以及最多女生数量

分析:费用流模板题,设置两个超级源点和汇点,边的容量为1,费用为男生数量.建边不能重复建边否则会T.zkw费用流在稠密图跑得快,普通的最小费用最大流也能过,只是相对来说慢了点

#include <bits/stdc++.h>

const int N = 5e2 + 5;
const int INF = 0x3f3f3f3f;
struct Min_Cost_Max_Flow {
struct Edge {
int from, to, cap, flow, cost;
};
std::vector<Edge> edges;
std::vector<int> G[N];
bool vis[N];
int d[N], p[N], a[N];
int n, m; void init(int n) {
this->n = n;
for (int i=0; i<=n; ++i) {
G[i].clear ();
}
edges.clear ();
}
void add_edge(int from, int to, int cap, int cost) {
edges.push_back ((Edge) {from, to, cap, 0, cost});
edges.push_back ((Edge) {to, from, 0, 0, -cost});
m = edges.size ();
G[from].push_back (m - 2);
G[to].push_back (m - 1);
}
bool SPFA(int s, int t, int &flow, int &cost) {
memset (d, INF, sizeof (d));
memset (vis, false, sizeof (vis));
memset (p, -1, sizeof (p));
d[s] = 0; vis[s] = true; p[s] = 0; a[s] = INF; std::queue<int> que; que.push (s);
while (!que.empty ()) {
int u = que.front (); que.pop ();
vis[u] = false;
for (int i=0; i<G[u].size (); ++i) {
Edge &e = edges[G[u][i]];
if (e.cap > e.flow && d[e.to] > d[u] + e.cost) {
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = std::min (a[u], e.cap - e.flow);
if (!vis[e.to]) {
vis[e.to] = true;
que.push (e.to);
}
}
}
} if (d[t] == INF) {
return false;
}
flow += a[t];
cost += d[t] * a[t];
int u = t;
while (u != s) {
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -= a[t];
u = edges[p[u]].from;
}
return true;
}
void run(int s, int t, int &flow, int &cost) {
flow = cost = 0;
while (SPFA (s, t, flow, cost)); printf ("%d %d\n", flow, 2 * flow - cost);
for (int i=0; i<edges.size (); i+=2) {
if (edges[i].from == s || edges[i].to == t || edges[i].flow == 0) {
continue;
}
printf ("%d %d\n", edges[i].from, edges[i].to);
}
}
};
Min_Cost_Max_Flow mcmf;
char group[N], sex[N];
bool list[N];
int n, m; int main() {
int T; scanf ("%d", &T);
while (T--) {
scanf ("%d", &n);
scanf ("%s", group + 1);
scanf ("%s", sex + 1); mcmf.init (n + 1);
int s = 0, t = n + 1;
for (int i=1; i<=n; ++i) {
if (group[i] == '0') {
mcmf.add_edge (s, i, 1, 0);
} else {
mcmf.add_edge (i, t, 1, 0);
}
int m; scanf ("%d", &m);
memset (list, false, sizeof (list));
for (int j=1; j<=m; ++j) {
int v; scanf ("%d", &v);
list[v] = true;
}
if (group[i] == '1') {
continue;
}
int cost = (sex[i] == '1');
for (int j=1; j<=n; ++j) {
if (list[j] || group[i] == group[j]) {
continue;
}
mcmf.add_edge (i, j, 1, cost + (sex[j] == '1'));
}
}
int flow, cost;
mcmf.run (s, t, flow, cost);
} return 0;
}

  

费用流 ZOJ 3933 Team Formation的更多相关文章

  1. ZOJ 3933 Team Formation

    费用流裸题......比赛的时候少写了一句话....导致增加了很多无用的边一直在TLE #include<cstdio> #include<cstring> #include& ...

  2. 位运算 ZOJ 3870 Team Formation

    题目传送门 /* 题意:找出符合 A^B > max (A, B) 的组数: 位运算:异或的性质,1^1=0, 1^0=1, 0^1=1, 0^0=0:与的性质:1^1=1, 1^0=0, 0^ ...

  3. Zoj 3870——Team Formation——————【技巧,规律】

    Team Formation Time Limit: 3 Seconds      Memory Limit: 131072 KB For an upcoming programming contes ...

  4. ZOJ 3870 Team Formation 贪心二进制

                                                    B - Team Formation Description For an upcoming progr ...

  5. ZOJ 3870 Team Formation 位运算 位异或用与运算做的

    For an upcoming programming contest, Edward, the headmaster of Marjar University, is forming a two-m ...

  6. ZOJ - 3870 Team Formation(异或)

    题意:给定N个数,求这N个数中满足A ⊕ B > max{A, B})的AB有多少对.(A,B是N中的某两个数) 分析: 1.异或,首先想到转化为二进制. eg:110011(A)和 1(B)- ...

  7. zoj The 12th Zhejiang Provincial Collegiate Programming Contest Team Formation

    http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=5494 The 12th Zhejiang Provincial ...

  8. ZOJ 3870:Team Formation(位运算&思维)

    Team Formation Time Limit: 2 Seconds Memory Limit: 131072 KB For an upcoming programming contest, Ed ...

  9. UVALive 4863 Balloons 贪心/费用流

    There will be several test cases in the input. Each test case will begin with a line with three inte ...

随机推荐

  1. 用jquery怎么实现点击显示,再一次点击隐藏

    html代码: <button>点击</button> <div class="div"></div> css代码: <sty ...

  2. sql的优化相关问题

    这篇文章写的真心不错,值得仔细拜读,所以将其转载过来了. 一.             分析阶段 一 般来说,在系统分析阶段往往有太多需要关注的地方,系统各种功能性.可用性.可靠性.安全性需求往往吸引 ...

  3. supersr--图形上下文的注意点

    - (void)test { // 不要自己调用drawRect:方法的原因: // 当系统调用drawRect:方法之前, 会创建一个与当前UIView的layer相关的图形上下文, 这样就可以保证 ...

  4. September 11th 2016 Week 38th Sunday

    Nothing happens unless first a dream. 一切始于梦想. When everything seems to be going against you, remembe ...

  5. 如何激活webstorm 11

    以前使用webstorm 10,可以在网上搜个注册码进行激活.后来升级了webstorm 11,发现原来的注册码和注册机已经不能激活了.查询后,才知道WebStorm 11改变了注册方法,可以在Lic ...

  6. osgi学习

    Bundle可以被动态地安装.启动.停止和卸载.Bundle是服务(Service)和组件(Component)的载体.在OSGi中,每个Bundle都有自己独立于其他Bundle的ClassLoad ...

  7. ASP.NET Global 全局事件处理

    添加Global文件,名字不要改 Global类说明: using System; using System.Collections.Generic; using System.IO; using S ...

  8. iOS 文档分享相关

    在非系统预览情况下  指定文件打开系统分享菜单 NSString *savedPath = [NSHomeDirectory() stringByAppendingString:[NSString s ...

  9. profiler加入计划任务

    创建profiler的存储过程: USE [xxxDB] GO /****** Object: StoredProcedure [dbo].[CreateProfile] Script Date: 2 ...

  10. jquery学习笔记-----插件开发的编写总结

    一.对jQuery对象的扩展 ;(function($){ $.fn.extend(  { fun1:abc,fun2:1bc … } ) })(jQuery) 这里采用立即执行模式,即不用调用也能执 ...