https://blog.csdn.net/u014313009/article/details/38944687

SIGIR的一篇推荐算法论文中提到用NDCG和AUC作为比较效果的指标,之前没了解过这两个指标,便查找相关概念,整理如下。

一、NDCG
1.DCG
       首先,介绍一下DCG。DCG的全称是Discounted Cumulative Gain,它是衡量搜索引擎算法的一个指标。搜索引擎一般采用PI(per item)的方式进行评测,即逐条对搜索结果进行等级的打分。比如在Google搜索到一个词,得到5个结果。我们对这些结果进行3个等级的区分:Good、Fair、Bad,对应的分值分别是3、2、1。假设这5个结果的分值分别是3、1、2、3、2。
       使用DCG这个统计方法有两个前提:
       (1) 在搜索页面中,相关度越高的结果排在前面越好。
       (2) 在PI标注时,等级高的结果比等级低的结果好。
在一个搜索结果的list里面,假设有两个结果的评级都是Good,但是第一个排在第一位,第二个排在第40位,虽然等级是一样的,但排在40位的那个结果被用户看到的概率比较小,对整个页面的贡献也要比第一个结果小很多。所以第二个结果的得分应该有所减少。DCG的计算公式如下:

其中,就是第 i 个结果的得分。 
2. NDCG
       因为不同的搜索结果的数量很可能不相等,所以不同搜索的DCG值不能直接做对比。解决的方法是比较NDCG。NDCG的定义如下:

IDCG(Ideal DCG),即理想的DCG。举上面的例子来说,5个搜索结果的分值是3、1、2、3、2,那么DCG = 3 + (1+1.26+1.5+0.86 )=7.62。
       而IDCG下的分值排列顺序是3、3、2、2、1,所以IDCG=3 + (3+1.26+1+0.43)=8.69。
       所以,NDCG = DCG / IDCG = 0.88。

二、AUC
1. ROC曲线
       ROC分析的是二元分类模型,即输出结果只有两种类别的模型。ROC空间将伪阳性率(FPR,False Position Rate)定为X轴,真阳性率(TPR,True Position Rate)定为Y轴。
      TPR = TP / ( TP + FN),表示在所有实际为阳性的样本中,被正确判断为阳性的比例。(TP:真阳性,FN:伪阴性)
       FPR = FP / ( FP + TN),表示在所有实际为阴性的样本中,被正确判断为阴性的比例。(TN:真阴性,FP:伪阳性)

对于包含100个阳性和100个阴性的样本,以下是4个分类器的结果:

其中,ACC表示准确率。可以把这四个分类器映射成ROC空间中的一个点,如下图所示:

可以发现两个规律:(1) 越靠近左上角的点,准确率越高。(2) 如果点位于(0,0)和(1,1)的连线下方,那么一个有效的补救方法是把所有预测结果反向(即,如果输出结果为正类,则最终判定为负类;如果输出结果为负类,则判定为正类)。
       在同一个分类器内,设置不同的阈值则会产生不同的坐标,这些坐标连成的曲线叫做ROC曲线。
       当阈值被设定为最高时,所有的样本都被预测为阴性,所以FP=0,TP=0,此时的FPR = FP / (FP+TN)=0,TPR = TP / (TP+FN) =0。这是坐标为(0,0)。
       当阈值被设定为最低时,所有样本都被预测为阳性,同理可得:FPR=1,TPR=1,坐标为(1,1)。所以ROC曲线经过了(0,0)和(1,1)。

2. AUC
       ROC曲线示例如下:

为了比较分类器的好坏,就将每个曲线下的面积作为比较,面积越大,则分类器效果越好。其中,这个面积就叫做AUC,全称是Area Under the roc Curve(ROC曲线下面积)。
————————————————
版权声明:本文为CSDN博主「__鸿」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/u014313009/article/details/38944687

NDCG、AUC介绍的更多相关文章

  1. ROC和AUC介绍以及如何计算AUC ---好!!!!

    from:https://www.douban.com/note/284051363/?type=like 原帖发表在我的博客:http://alexkong.net/2013/06/introduc ...

  2. 【转】ROC和AUC介绍以及如何计算AUC

    转自:https://www.douban.com/note/284051363/ ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器( ...

  3. ROC和AUC介绍以及如何计算AUC

    原文:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ 为什么使用ROC曲线 既然已经这么多评价标准,为什么还要使用ROC和AUC呢?因 ...

  4. 使用Python画ROC曲线以及AUC值

    from:http://kubicode.me/2016/09/19/Machine%20Learning/AUC-Calculation-by-Python/ AUC介绍 AUC(Area Unde ...

  5. AUC,KS,ROC

    要弄明白ks值和auc值的关系首先要弄懂roc曲线和ks曲线是怎么画出来的.其实从某个角度上来讲ROC曲线和KS曲线是一回事,只是横纵坐标的取法不同而已.拿逻辑回归举例,模型训练完成之后每个样本都会得 ...

  6. XGBoost:在Python中使用XGBoost

    原文:http://blog.csdn.net/zc02051126/article/details/46771793 在Python中使用XGBoost 下面将介绍XGBoost的Python模块, ...

  7. XGBoost和LightGBM的参数以及调参

    一.XGBoost参数解释 XGBoost的参数一共分为三类: 通用参数:宏观函数控制. Booster参数:控制每一步的booster(tree/regression).booster参数一般可以调 ...

  8. Datasets and Evaluation Metrics used in Recommendation System

    Movielens and Netflix remain the most-used datasets. Other datasets such as Amazon, Yelp and CiteUli ...

  9. xgboost使用细节

    from http://blog.csdn.net/zc02051126/article/details/46771793 在Python中使用XGBoost 下面将介绍XGBoost的Python模 ...

随机推荐

  1. 部门工资前三高的所有员工 - LeetCode

    Employee 表包含所有员工信息,每个员工有其对应的工号 Id,姓名 Name,工资 Salary 和部门编号 DepartmentId . +----+-------+--------+---- ...

  2. python网络爬虫(1)——安装scrapy框架的常见问题及其解决方法

    Scrapy是为了爬取网站数据而编写的一款应用框架,出名,强大.所谓的框架其实就是一个集成了相应的功能且具有很强通用性的项目模板. 其实在Linux和 Mac安装,就简单的pip命令即可: pip i ...

  3. C# 删除文件到回收站

    首先添加Microsoft.VisualBasic引用 程序中引用 Microsoft.VisualBasic.FileIO 来进行处理 Console.WriteLine("删除文件到回收 ...

  4. GitBook基本使用

    1.安装 Node.js:https://nodejs.org/en/ 2.安装 GitBook: npm install gitbook-cli -g gitbook -V  #查看gitbook是 ...

  5. 2019-11-29-win10-UWP-Controls-by-function

    原文:2019-11-29-win10-UWP-Controls-by-function title author date CreateTime categories win10 UWP Contr ...

  6. select2插件placeholder不显示的问题

    如果设置了select2的templateSelection,没做特殊处理的话placeholder会不显示,需要做特殊处理 templateSelection: function(repo){ if ...

  7. FileChannel(API详解)

    1.两种获取通道的方法FileChannel.open()的方式 FileChannel channell = FileChannel.open(Paths.get("a.txt" ...

  8. qt 操作串口 QSerialPort

    准备工作 *.pro中加入 QT += serialport 初始化 void MainWindow::initPort() { //读取串口信息 foreach (const QSerialPort ...

  9. NPOI.dll 在哪里?

    一.问题 NPOI下载后找不到网上人家说的几个DLL https://bbs.csdn.net/topics/392510552 二.答案: 1.VS2015引用NPOI2.4.1和NuGet的安装方 ...

  10. 关于ORACLE图形化安装过程中出现的竖线的处理办法

    这种情况上传个jre 并指定下就好了 ~/database/runInstaller -jreLoc /usr/local/jre1.8.0_191/