spark调优——JVM调优
对于JVM调优,首先应该明确,(major)full gc/minor gc,都会导致JVM的工作线程停止工作,即stop the world。
JVM调优一:降低cache操作的内存占比
1. 静态内存管理机制
根据Spark静态内存管理机制,堆内存被划分为了两块,Storage和Execution。Storage主要用于缓存RDD数据和broadcast数据,Execution主要用于缓存在shuffle过程中产生的中间数据,Storage占系统内存的60%,Execution占系统内存的20%,并且两者完全独立。
在一般情况下,Storage的内存都提供给了cache操作,但是如果在某些情况下cache操作内存不是很紧张,而task的算子中创建的对象很多,Execution内存又相对较小,这回导致频繁的minor gc,甚至于频繁的full gc,进而导致Spark频繁的停止工作,性能影响会很大。
在Spark UI中可以查看每个stage的运行情况,包括每个task的运行时间、gc时间等等,如果发现gc太频繁,时间太长,就可以考虑调节Storage的内存占比,让task执行算子函数式,有更多的内存可以使用。
Storage内存区域可以通过spark.storage.memoryFraction参数进行指定,默认为0.6,即60%,可以逐级向下递减,如代码清单2-6所示:
val conf = new SparkConf()
.set("spark.storage.memoryFraction", "0.4")
2. 统一内存管理机制
根据Spark统一内存管理机制,堆内存被划分为了两块,Storage和Execution。Storage主要用于缓存数据,Execution主要用于缓存在shuffle过程中产生的中间数据,两者所组成的内存部分称为统一内存,Storage和Execution各占统一内存的50%,由于动态占用机制的实现,shuffle过程需要的内存过大时,会自动占用Storage的内存区域,因此无需手动进行调节。
JVM调优二:调节Executor堆外内存
Executor的堆外内存主要用于程序的共享库、Perm Space、 线程Stack和一些Memory mapping等, 或者类C方式allocate object。
有时,如果你的Spark作业处理的数据量非常大,达到几亿的数据量,此时运行Spark作业会时不时地报错,例如shuffle output file cannot find,executor lost,task lost,out of memory等,这可能是Executor的堆外内存不太够用,导致Executor在运行的过程中内存溢出。
stage的task在运行的时候,可能要从一些Executor中去拉取shuffle map output文件,但是Executor可能已经由于内存溢出挂掉了,其关联的BlockManager也没有了,这就可能会报出shuffle output file cannot find,executor lost,task lost,out of memory等错误,此时,就可以考虑调节一下Executor的堆外内存,也就可以避免报错,与此同时,堆外内存调节的比较大的时候,对于性能来讲,也会带来一定的提升。
默认情况下,Executor堆外内存上限大概为300多MB,在实际的生产环境下,对海量数据进行处理的时候,这里都会出现问题,导致Spark作业反复崩溃,无法运行,此时就会去调节这个参数,到至少1G,甚至于2G、4G。
Executor堆外内存的配置需要在spark-submit脚本里配置,如代码清单2-7所示:
--conf spark.yarn.executor.memoryOverhead=
以上参数配置完成后,会避免掉某些JVM OOM的异常问题,同时,可以提升整体Spark作业的性能。
JVM调优三:调节连接等待时长
在Spark作业运行过程中,Executor优先从自己本地关联的BlockManager中获取某份数据,如果本地BlockManager没有的话,会通过TransferService远程连接其他节点上Executor的BlockManager来获取数据。
如果task在运行过程中创建大量对象或者创建的对象较大,会占用大量的内存,这回导致频繁的垃圾回收,但是垃圾回收会导致工作现场全部停止,也就是说,垃圾回收一旦执行,Spark的Executor进程就会停止工作,无法提供相应,此时,由于没有响应,无法建立网络连接,会导致网络连接超时。
在生产环境下,有时会遇到file not found、file lost这类错误,在这种情况下,很有可能是Executor的BlockManager在拉取数据的时候,无法建立连接,然后超过默认的连接等待时长60s后,宣告数据拉取失败,如果反复尝试都拉取不到数据,可能会导致Spark作业的崩溃。这种情况也可能会导致DAGScheduler反复提交几次stage,TaskScheduler返回提交几次task,大大延长了我们的Spark作业的运行时间。
此时,可以考虑调节连接的超时时长,连接等待时长需要在spark-submit脚本中进行设置,设置方式如代码清单2-8所示:
--conf spark.core.connection.ack.wait.timeout=
调节连接等待时长后,通常可以避免部分的XX文件拉取失败、XX文件lost等报错。
spark调优——JVM调优的更多相关文章
- spark性能调优--jvm调优(转)
一.问题切入 调用spark 程序的时候,在获取数据库连接的时候总是报 内存溢出 错误 (在ideal上运行的时候设置jvm参数 -Xms512m -Xmx1024m -XX:PermSize=51 ...
- java性能调优---------------------JVM调优方案
JVM的调优的主要过程有: 1.确定堆内存大小(-Xmx.-Xms) 2.合理分配新生代和老年代(-XX:NewRatio.-Xmn.-XX:SurvivorRatio) 3.确定永久区大小(-XX: ...
- jvm实战-jvm调优
jvm调优 jvm调优主要是内存管理方面的调优,包括各个代的大小,GC策略等. 代大小调优 JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制:系统的可用虚拟内 ...
- JVM调优及参数设置
(1)参数 -Xms:初始堆大小 -Xmx :最大堆大小 此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存 -Xmn :年轻代大小 整个堆大小=年轻代大小 + 年老代大小 + 持 ...
- 服务器的tomcat调优和jvm调化
下面讲述的是tomcat的优化,及jvm的优化 Tomcat 的缺省配置是不能稳定长期运行的,也就是不适合生产环境,它会死机,让你不断重新启动,甚至在午夜时分唤醒你.对于操作系统优化来说,是尽可能的增 ...
- JVM调优工具锦囊
Arthas线上 分析诊断调优工具 以前我们要排查线上问题,通常使用的是jdk自带的调优工具和命令.最常见的就是dump线上日志,然后下载到本地,导入到jvisualvm工具中.这样操作有诸多不变,现 ...
- [Spark性能调优] 第四章 : Spark Shuffle 中 JVM 内存使用及配置内幕详情
本课主题 JVM 內存使用架构剖析 Spark 1.6.x 和 Spark 2.x 的 JVM 剖析 Spark 1.6.x 以前 on Yarn 计算内存使用案例 Spark Unified Mem ...
- Spark性能调优之JVM调优
Spark性能调优之JVM调优 通过一张图让你明白以下四个问题 1.JVM GC机制,堆内存的组成 2.Spark的调优为什么会和JVM的调 ...
- Spark调优之JVM调优
一.JVM调优 JVM: 老年代: 存放少量生命周期长的对象,如连接池 年轻代: Spark task执行算子函数自己创建的大量对象 JVM机制: 对象进入java虚拟机之后会放在eden区域和一个s ...
随机推荐
- volatile 和 内存屏障
接下来看看volatile是如何解决上面两个问题的: 被volatile修饰的变量在编译成字节码文件时会多个lock指令,该指令在执行过程中会生成相应的内存屏障,以此来解决可见性跟重排序的问题. 内存 ...
- SQL Server创建、更改和删除架构
SQL Server创建架构 学习如何使用SQL Server CREATE SCHEMA在当前数据库中创建新架构. SQL Server中的架构是什么 架构是包括表,视图,触发器,存储过程,索引等在 ...
- Linux下常用目录有哪些?分别有什么作用?
/boot:这个目录是用来存放与系统启动相关的文件 /root:root用户的家目录 /bin:存放大部分的二进制的可执行文件,也就是大部分的linux命令. /tmp:这个文件目录一般是公共的,也就 ...
- Elasticsearch常见用法-分布式集群
集群内部工作方式 Elasticsearch用于构建高可用和可扩展的系统.扩展的方式可以是购买更好的服务器(纵向扩展(vertical scale or scaling up))或者购买更多的服务器( ...
- opencv常用数据结构
2019/10/29 1.Mat 成员函数:cols.rows.channels.ptr获取任意行的首地址.at处理像素 2.InputArray/OutArray相当于Mat 2019/11/4 1 ...
- efCore+Mysql+Net Core
1.首先新建一个空的Asp.net core项目 2.新建一个类 gj.cs public class gj { // <summary> /// 主键 /// </summa ...
- 【转】socket通信-C#实现udp通讯
在日常碰到的项目中,有些场景下不适合使用tcp常连接,而需要靠UDP无连接的数据收发.那么如何使用SharpSocket完成UDP收发数据呢?其中要掌握的关键点是什么呢? 点击查看原博文内容
- docker,containerd,runc,docker-shim之间的关系
原文:https://blog.csdn.net/u013812710/article/details/79001463 关于containerd关于containerd的一些详解介绍,请参考cont ...
- Nginx反向代理其他使用方式
Nginx反向代理在生产环境中使用很多的. 场景1: 域名没有备案,可以把域名解析到香港一台云主机上,在香港云主机做个代理,而网站数据是在大陆的服务器上. 示例1: server { listen 8 ...
- android中activity和service是否在同一个进程中
分两种情况,如果是本地线程,肯定是同一个进程中的, 如果是远程服务,那么activity和service将在不同的进程中的 ----- 非远程服务,和Activity属于同一个进程和线程:而远程服务和 ...