机器学习笔记7:矩阵分解Recommender.Matrix.Factorization
参考地址:
贪心学院:https://github.com/GreedyAIAcademy/Machine-Learning
1矩阵分解概述
1.1用在什么地方
推荐系统:最著名的就那个烂大街的啤酒和尿布的故事,还有现在头条的投喂用户使用的也是推荐系统。就不多说了。
1.2推荐的原理
设,矩阵R代表3个用户对4部影片的评分,矩阵U和P是通过算法分解出来的矩阵,R是预测出来的矩阵。
此时我们可以看出, 矩阵R中的值很接近原始矩阵R中的值,这样填补之后的值就是我们要的数字。
2矩阵分解的原理
2.1目标函数
如1.2所示,我们希望的结果就是R*中的结果与R中的结果差值最小。
因此我们可以得到目标函数:
\\
Z = \{(i,j):r_{ij} 已知\}
\]
\(U_i P_j\)为行向量,分别来自于矩阵U和矩阵P的第i行和第j行;分别代表了第i个用户的画像向量,和第j个物品的画像向量。
2.2 损失函数
为了方便求导,我们乘个1/2,结果如下:
\\
Z = \{(i,j):r_{ij} 已知\}
\]
继续计算结果如下:
\]
得到损失梯度如下:
\\
\frac{\partial L_{ij}}{\partial P_{j}}= \frac{\partial }{\partial P_{j}} [\frac{1}{2}(R_{ij}-U_{i}\cdot P_{j})^2] = -U_i(R_{ij}-U_{i}\cdot P_{j})
\]
为了防止过拟合和训练过程中的误差,加入正则项
\]
再求偏导可得:
\\
\frac{\partial L_{ij}}{\partial P_{j}}=-U_{i}(R_{ij}-U_{i}\cdot P_{j}) + \lambda P_{j} \\
\]
2.3 通过梯度下降的方法求得结果
设定k的值,设定学习步长\(\gamma\)(learning rate),初始化U和P,重复以下步骤直到均方差满意为止:
遍历Z中的(i,j),Z={(i,j):\(r_{ij}\)已知}
P_{j}\leftarrow P_{j} - \gamma \frac{\partial L_{ij}}{\partial P_{j}} \\
\]
3 代码实现
看了上面的公式肯定是一知半解的,但看了矩阵分解函数,就会对梯度下降问题的解决方法豁然开朗
代码:
# 导入 nunpy 和 surprise 辅助库
import numpy as np
import surprise
# 计算模型
class MatrixFactorization(surprise.AlgoBase):
'''基于矩阵分解的推荐.'''
def __init__(self, learning_rate, n_epochs, n_factors, lmd):
self.lr = learning_rate # 梯度下降法的学习率
self.n_epochs = n_epochs # 梯度下降法的迭代次数
self.n_factors = n_factors # 分解的矩阵的秩(rank)
self.lmd = lmd # 防止过拟合的正则化的强度
def fit(self, trainset):
'''通过梯度下降法训练, 得到所有 u_i 和 p_j 的值'''
print('Fitting data with SGD...')
# 随机初始化 user 和 item 矩阵.
u = np.random.normal(0, .1, (trainset.n_users, self.n_factors))
p = np.random.normal(0, .1, (trainset.n_items, self.n_factors))
# 梯度下降法
for _ in range(self.n_epochs):
for i, j, r_ij in trainset.all_ratings():
err = r_ij - np.dot(u[i], p[j])
# 利用梯度调整 u_i 和 p_j
u[i] -= -self.lr * err * p[j] + self.lr * self.lmd * u[i]
p[j] -= -self.lr * err * u[i] + self.lr * self.lmd * p[j]
# 注意: 修正 p_j 时, 按照严格定义, 我们应该使用 u_i 修正之前的值, 但是实际上差别微乎其微
self.u, self.p = u, p
self.trainset = trainset
def estimate(self, i, j):
'''预测 user i 对 item j 的评分.'''
# 如果用户 i 和物品 j 是已知的值, 返回 u_i 和 p_j 的点积
# 否则使用全局平均评分rating值(cold start 冷启动问题)
if self.trainset.knows_user(i) and self.trainset.knows_item(j):
return np.dot(self.u[i], self.p[j])
else:
return self.trainset.global_mean
# 应用
from surprise import BaselineOnly
from surprise import Dataset
from surprise import Reader
from surprise import accuracy
from surprise.model_selection import cross_validate
from surprise.model_selection import train_test_split
import os
# 数据文件
file_path = os.path.expanduser('./ml-100k/u.data')
# 数据文件的格式如下:
# 'user item rating timestamp', 使用制表符 '\t' 分割, rating值在1-5之间.
reader = Reader(line_format='user item rating timestamp', sep='\t', rating_scale=(1, 5))
data = Dataset.load_from_file(file_path, reader=reader)
# 将数据随机分为训练和测试数据集
trainset, testset = train_test_split(data, test_size=.25)
# 初始化以上定义的矩阵分解类.
algo = MatrixFactorization(learning_rate=.005, n_epochs=60, n_factors=2, lmd = 0.2)
# 训练
algo.fit(trainset)
# 预测
predictions = algo.test(testset)
# 计算平均绝对误差
accuracy.mae(predictions)
#结果:0.7871327139440717
# 使用 surpise 内建的基于最近邻的方法做比较
algo = surprise.KNNBasic()
algo.fit(trainset)
predictions = algo.test(testset)
accuracy.mae(predictions)
#结果:0.7827160139309475
# 使用 surpise 内建的基于 SVD 的方法做比较
algo = surprise.SVD()
algo.fit(trainset)
predictions = algo.test(testset)
accuracy.mae(predictions)
#结果:0.7450633876817936
机器学习笔记7:矩阵分解Recommender.Matrix.Factorization的更多相关文章
- 矩阵分解(matrix factorization)
1. 基本概念 针对高维空间中的数据集,矩阵分解通过寻找到一组基及每一个数据点在该基向量下的表示,可对原始高维空间中的数据集进行压缩表示. 令 X=[x1,⋯,xm]∈Rm×n 为数据矩阵,矩阵分解的 ...
- Matrix Factorization SVD 矩阵分解
Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge ...
- 简单的基于矩阵分解的推荐算法-PMF, NMF
介绍: 推荐系统中最为主流与经典的技术之一是协同过滤技术(Collaborative Filtering),它是基于这样的假设:用户如果在过去对某些项目产生过兴趣,那么将来他很可能依然对其保持热忱.其 ...
- Non-negative Matrix Factorization 非负矩阵分解
著名的科学杂志<Nature>于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果.该文提出了一种新的矩阵分解思想――非负矩阵分解(Non-nega ...
- 关于NMF(Non-negative Matrix Factorization )
著名的科学杂志<Nature>于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果.该文提出了一种新的矩阵分解思想――非负矩阵分解(Non-nega ...
- 吴恩达机器学习笔记59-向量化:低秩矩阵分解与均值归一化(Vectorization: Low Rank Matrix Factorization & Mean Normalization)
一.向量化:低秩矩阵分解 之前我们介绍了协同过滤算法,本节介绍该算法的向量化实现,以及说说有关该算法可以做的其他事情. 举例:1.当给出一件产品时,你能否找到与之相关的其它产品.2.一位用户最近看上一 ...
- 【RS】Matrix Factorization Techniques for Recommender Systems - 推荐系统的矩阵分解技术
[论文标题]Matrix Factorization Techniques for Recommender Systems(2009,Published by the IEEE Computer So ...
- 推荐系统(recommender systems):预测电影评分--构造推荐系统的一种方法:低秩矩阵分解(low rank matrix factorization)
如上图中的predicted ratings矩阵可以分解成X与ΘT的乘积,这个叫做低秩矩阵分解. 我们先学习出product的特征参数向量,在实际应用中这些学习出来的参数向量可能比较难以理解,也很难可 ...
- 论文笔记: Matrix Factorization Techniques For Recommender Systems
Recommender system strategies 通过例子简单介绍了一下 collaborative filtering 以及latent model,这两个方法在之前的博客里面介绍过,不累 ...
随机推荐
- spark基础知识四
围绕spark的其他特性和应用.主要包括以下几个方面 spark自定义分区 spark中的共享变量 spark程序的序列化问题 spark中的application/job/stage/task之间的 ...
- CSS3中box-sizing属性的作用以及应用场景
盒模型box-sizing: 取值 1.content-box 默认值,标准盒模型,设置宽度为内容宽度,实际宽度为左右边距加上左右边框加上左右填充再加上内容宽度 2.border-box 设置宽度等于 ...
- C语言实现聊天室软件
/* common.h */ /*服务器端口信息*/ #define PORTLINK ".charport" /*缓存限制*/ #define MAXNAMELEN 256 #d ...
- jquery设置bootstrap-select的默认选中值
<select id="mSelect"></select> $("#mSelect").val(["1",&quo ...
- .NET Core 获取自定义配置文件信息
前言 .net core来势已不可阻挡.既然挡不了,那我们就顺应它.了解它并学习它.今天我们就来看看和之前.net版本的配置文件读取方式有何异同,这里不在赘述.NET Core 基础知识. ps:更新 ...
- python入门之作用域
作用域的分类 1.全局作用域 全局可以调用的名字就存在于全局作用域 内置名称空间 + 全局名称空间 2.局部作用域 局部可以调用的名字就存放于局部作用域 局部名称空间 3. global 声明全局变量 ...
- | C语言I作业02
C语言I博客作业02 标签: 18软件2班 李煦亮 问题 答案 这个作业属于那个课程 C语言程序设计I 这个作业要求在哪里 https://edu.cnblogs.com/campus/zswxy/C ...
- 在spring管理的类的要注意问题
特别时写框架的时候, 注意依赖引用,类的成员变量不要随便new,看spring容器中是否管理过,new出来的时其他的对象了
- Js迷宫游戏
<!DOCTYPE html> <html> <head> <title>MyHtml.html</title> </head> ...
- bypass-media 模式30秒挂断
语音正常,但是通话30秒后自动挂断, 服务器为阿里云,专网模式 修改ext-sip-ip 为公网ip