BZOJ 3561: DZY Loves Math VI 莫比乌斯反演+复杂度分析
推到了一个推不下去的形式,然后就不会了 ~
看题解后傻了:我推的是对的,推不下去是因为不需要再推了.
复杂度看似很大,但其实是均摊 $O(n)$ 的,看来分析复杂度也是一个能力啊 ~
code:
#include <bits/stdc++.h>
#define ll long long
#define N 500006
#define mod 1000000007
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int cnt;
int mu[N],vis[N],prime[N];
int qpow(int x,int y)
{
int tmp=1;
while(y)
{
if(y&1) tmp=(ll)tmp*x%mod;
x=(ll)x*x%mod;
y>>=1;
}
return tmp;
}
void Initialize()
{
int i,j;
mu[1]=1;
for(i=2;i<N;++i)
{
if(!vis[i]) prime[++cnt]=i,mu[i]=-1;
for(j=1;j<=cnt&&prime[j]*i<N;++j)
{
vis[i*prime[j]]=1;
if(i%prime[j])
{
mu[i*prime[j]]=-mu[i];
}
else
{
mu[i*prime[j]]=0;
break;
}
}
}
}
int n,m;
int a[N],sum[N];
int ans=0;
int main()
{
int i,j;
// setIO("input");
Initialize();
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
for(i=1;i<=m;++i) a[i]=1;
for(int d=1;d<=n;++d)
{
for(i=1;i<=m/d;++i)
{
a[i]=(ll)a[i]*i%mod;
sum[i]=(ll)(sum[i-1]+a[i])%mod;
}
int tmp=0;
for(int c=1;c<=n/d;++c)
{
tmp=(ll)(tmp+(ll)mu[c]*qpow(c,2*d)%mod*sum[n/d/c]%mod*sum[m/d/c]%mod+mod)%mod;
}
ans=(ll)(ans+(ll)qpow(d,d)*tmp%mod)%mod;
}
printf("%d\n",ans);
return 0;
}
BZOJ 3561: DZY Loves Math VI 莫比乌斯反演+复杂度分析的更多相关文章
- BZOJ 3561 DZY Loves Math VI
BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...
- ●BZOJ 3561 DZY Loves Math VI
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3561 题解: 莫比乌斯反演 $$\begin{aligned}ANS&=\sum_{ ...
- 【bzoj3561】DZY Loves Math VI 莫比乌斯反演
题目描述 给定正整数n,m.求 输入 一行两个整数n,m. 输出 一个整数,为答案模1000000007后的值. 样例输入 5 4 样例输出 424 题解 莫比乌斯反演 (为了方便,以下公式默认$ ...
- BZOJ3561 DZY Loves Math VI 莫比乌斯反演
传送门 看到\(gcd\)相关先推式子(默认\(N \leq M\)): \(\begin{align*} \sum\limits_{i=1}^N \sum\limits_{j=1}^M (lcm(i ...
- 【BZOJ 3561】 3561: DZY Loves Math VI (莫比乌斯,均摊log)
3561: DZY Loves Math VI Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 205 Solved: 141 Description ...
- 【BZOJ3309】DZY Loves Math(莫比乌斯反演)
[BZOJ3309]DZY Loves Math(莫比乌斯反演) 题面 求 \[\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b))\] 其中,\(f(x)\)表示\(x\)分解质因 ...
- BZOJ3309 DZY Loves Math(莫比乌斯反演+线性筛)
一通正常的莫比乌斯反演后,我们只需要求出g(n)=Σf(d)*μ(n/d)的前缀和就好了. 考虑怎么求g(n).当然是打表啊.设n=∏piai,n/d=∏pibi .显然若存在bi>1则这个d没 ...
- DZY LOVES MATH (莫比乌斯反演)
OK!开始更新莫比乌斯反演 先看了一下数据范围,嗯,根据\(jiry\)老师的真言,我们一定是可以筛一遍然后用根号或者是\(log\)的算法. 题目思路挺简单,就是把原始的式子化成: \(\sum_{ ...
- 【BZOJ】3561: DZY Loves Math VI
题意 求\(\sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i, j)^{gcd(i, j)}\)(\(n, m<=500000\)) 分析 很显然要死推莫比乌斯 题解 设\ ...
随机推荐
- 【学习笔记】Docker基础
基本概念 Docker是什么? Docker是一种基于Golang开发的虚拟化技术,开发人员和系统管理员使用容器开发,部署和运行应用程序的平台. 使用Linux容器部署应用程序称为容器化. 容器不是新 ...
- SQL系列(七)—— 相似(like)
在看like之前先了解下通配符和搜索模式: 通 配 符 ( wildcard) 用来匹配值的一部分的特殊字符. 搜索模式(search pattern) 由字面值.通配符或两者组合构成的搜索条件. 目 ...
- Linux(二)各种实用命令
继续Linux命令学习,没有什么捷径,每个命令都去敲几遍就熟悉了,第二篇学习的是一些比较实用类的命令,主要是从开发的角度进行学习,并不深入,话不多说,开始! 一.系统管理类 1.1 stat --st ...
- laravel 5.5 仓库模式 文件之间接口与实现操作
仓库模式 最直接的意思就是: Eloquent数据(数据库)查询 方便快捷,简单明了.自己怎么写的,就怎么去调用,完全ok~ 本质意思: 仓库就像是业务内部的数据对象集合,负责协调业务和数据映射层之 ...
- session中删除数组中的某一个值 - 购物车例子 - jsp
这篇随笔简单的讲一下在session中移除数组中的某一项内容,比如这里有一个购物车其中有两件商品,需要移除其中洗发水这一件商品. 其实在这个session对象中存储了一个数组,在订购页面时选择商品加入 ...
- APS.NET MVC + EF (07)---表单和HTML辅助方法
在ASP.NET MVC中,可以借助HtmlHelper 对象来输出页面内容,提高开发效率.下面,我们将介绍一些常用的辅助方法. 7.1 HTML辅助方法 BeginForm 该辅助方法主要用来产生& ...
- Visual C++ 2010 SP1 x86&x64
Microsoft Visual C++ 2010 SP1 Redistributable Package (x86) https://www.microsoft.com/en-us/download ...
- Unity PhysicsScene测试
应该是unity 2018.3中加入的功能,对象可以放置于不同的物理场景中. 一个Scene对应一个物理场景(PhysicsScene),若想放入独立的物理场景测试创建一个Scene即可.见下图gif ...
- 使用 HttpWebRequest 类做 POST 请求没有应反
这几天给系统做第三方集成, 需要调用另一个软件的一个接口, 通过 HTTP 的方式调用,调用代码也挺简单的: string serviceUrl = string.Format("{0}/{ ...
- 2019-07-30 ThinkPHP文件上传
文件上传就是获取到待上传文件的临时路径,把它移动到服务器下的相应文件夹中. 文件上传,必须在表单中的form标签中写入:enctype="multipart/form-data" ...