BZOJ 3561: DZY Loves Math VI 莫比乌斯反演+复杂度分析
推到了一个推不下去的形式,然后就不会了 ~
看题解后傻了:我推的是对的,推不下去是因为不需要再推了.
复杂度看似很大,但其实是均摊 $O(n)$ 的,看来分析复杂度也是一个能力啊 ~
code:
#include <bits/stdc++.h>
#define ll long long
#define N 500006
#define mod 1000000007
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int cnt;
int mu[N],vis[N],prime[N];
int qpow(int x,int y)
{
int tmp=1;
while(y)
{
if(y&1) tmp=(ll)tmp*x%mod;
x=(ll)x*x%mod;
y>>=1;
}
return tmp;
}
void Initialize()
{
int i,j;
mu[1]=1;
for(i=2;i<N;++i)
{
if(!vis[i]) prime[++cnt]=i,mu[i]=-1;
for(j=1;j<=cnt&&prime[j]*i<N;++j)
{
vis[i*prime[j]]=1;
if(i%prime[j])
{
mu[i*prime[j]]=-mu[i];
}
else
{
mu[i*prime[j]]=0;
break;
}
}
}
}
int n,m;
int a[N],sum[N];
int ans=0;
int main()
{
int i,j;
// setIO("input");
Initialize();
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
for(i=1;i<=m;++i) a[i]=1;
for(int d=1;d<=n;++d)
{
for(i=1;i<=m/d;++i)
{
a[i]=(ll)a[i]*i%mod;
sum[i]=(ll)(sum[i-1]+a[i])%mod;
}
int tmp=0;
for(int c=1;c<=n/d;++c)
{
tmp=(ll)(tmp+(ll)mu[c]*qpow(c,2*d)%mod*sum[n/d/c]%mod*sum[m/d/c]%mod+mod)%mod;
}
ans=(ll)(ans+(ll)qpow(d,d)*tmp%mod)%mod;
}
printf("%d\n",ans);
return 0;
}
BZOJ 3561: DZY Loves Math VI 莫比乌斯反演+复杂度分析的更多相关文章
- BZOJ 3561 DZY Loves Math VI
BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...
- ●BZOJ 3561 DZY Loves Math VI
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3561 题解: 莫比乌斯反演 $$\begin{aligned}ANS&=\sum_{ ...
- 【bzoj3561】DZY Loves Math VI 莫比乌斯反演
题目描述 给定正整数n,m.求 输入 一行两个整数n,m. 输出 一个整数,为答案模1000000007后的值. 样例输入 5 4 样例输出 424 题解 莫比乌斯反演 (为了方便,以下公式默认$ ...
- BZOJ3561 DZY Loves Math VI 莫比乌斯反演
传送门 看到\(gcd\)相关先推式子(默认\(N \leq M\)): \(\begin{align*} \sum\limits_{i=1}^N \sum\limits_{j=1}^M (lcm(i ...
- 【BZOJ 3561】 3561: DZY Loves Math VI (莫比乌斯,均摊log)
3561: DZY Loves Math VI Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 205 Solved: 141 Description ...
- 【BZOJ3309】DZY Loves Math(莫比乌斯反演)
[BZOJ3309]DZY Loves Math(莫比乌斯反演) 题面 求 \[\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b))\] 其中,\(f(x)\)表示\(x\)分解质因 ...
- BZOJ3309 DZY Loves Math(莫比乌斯反演+线性筛)
一通正常的莫比乌斯反演后,我们只需要求出g(n)=Σf(d)*μ(n/d)的前缀和就好了. 考虑怎么求g(n).当然是打表啊.设n=∏piai,n/d=∏pibi .显然若存在bi>1则这个d没 ...
- DZY LOVES MATH (莫比乌斯反演)
OK!开始更新莫比乌斯反演 先看了一下数据范围,嗯,根据\(jiry\)老师的真言,我们一定是可以筛一遍然后用根号或者是\(log\)的算法. 题目思路挺简单,就是把原始的式子化成: \(\sum_{ ...
- 【BZOJ】3561: DZY Loves Math VI
题意 求\(\sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i, j)^{gcd(i, j)}\)(\(n, m<=500000\)) 分析 很显然要死推莫比乌斯 题解 设\ ...
随机推荐
- 『Tree nesting 树形状压dp 最小表示法』
Tree nesting (CF762F) Description 有两个树 S.T,问 S 中有多少个互不相同的连通子图与 T 同构.由于答案 可能会很大,请输出答案模 1000000007 后的值 ...
- Java学习:泛型简介
泛型 泛型:是一种未知的数据类型,当我们不知道使用什么数据类型的时候,可以使用泛型 泛型也可以看出是一个变量,用来接受数据类型 E e : Element 元素 T t : Type 类型 Array ...
- C# VB .net读取识别条形码线性条码codabar
codabar是比较常见的条形码编码规则类型的一种.如何在C#,vb等.NET平台语言里实现快速准确读取codabar条形码呢?答案是使用SharpBarcode! SharpBarcode是C#快速 ...
- Mybatis映射器接口代理对象的方式 运行过程
查询一张表的所有数据. 环境: 使用工具IntelliJ IDEA 2018.2版本. 创建Maven工程不用骨架 1.pom.xml <?xml version="1.0" ...
- 如何在Linux中复制文档
在办公室里复印文档过去需要专门的员工与机器.如今,复制是电脑用户无需多加思考的任务.在电脑里复制数据是如此微不足道的事,以致于你还没有意识到复制就发生了,例如当拖动文档到外部硬盘的时候. 数字实体复制 ...
- spark内存管理器--MemoryManager源码解析
MemoryManager内存管理器 内存管理器可以说是spark内核中最重要的基础模块之一,shuffle时的排序,rdd缓存,展开内存,广播变量,Task运行结果的存储等等,凡是需要使用内存的地方 ...
- Promise介绍及使用场景
Promise 介绍 Promise 是一个构造函数,是异步编程的一种解决方案.所谓Promse,它本身就是一个容器,里面保存着异步操作的结果,对的,这和回调函数类似. Promise 容器本身不是异 ...
- 从 Vue 的视角学 React(二)—— 基本语法
基于 Vue.js 开发的时候,每个 vue 文件都是一个单独的组件,可以包含 HTML,JS,CSS 而 React 是以函数为基础,每个 function 就是一个组件.虽然 JSX 让 HTML ...
- Jnetpcap简述
Jnetpcap简述 最近需要做一个本地网络流量分析的项目,基于 Java 语言,上网查了很多资料,最后利用 Jnetpcap 实现了,这里做个记录. 这里先列一下我用到的工具以及版本: Eclips ...
- Prometheus学习笔记(5)Grafana可视化展示
目录 一.Grafana安装和启动 二.配置数据源 三.配置dashboard 四.配置grafana告警 一.Grafana安装和启动 Grafana支持查询Prometheus.从Grafana ...