Description

Alice和Bob居住在一个由N座岛屿组成的国家,岛屿被编号为0到N-1。某些岛屿之间有桥相连,桥上的道路是双
向的,但一次只能供一人通行。其中一些桥由于年久失修成为危桥,最多只能通行两次。Alice希望在岛屿al和a2之间往返an次(从al到a2再从a2
到al算一次往返)。同时,Bob希望在岛屿bl和b2之间往返bn次。这个过程中,所有危桥最多通行两次,其余的桥可以无限次通行。请问Alice和
Bob能完成他们的愿望吗?

Input

本题有多组测试数据。
每组数据第一行包含7个空格隔开的整数,分别为N、al、a2、an、bl、b2、bn。
接下来是一个N行N列的对称矩阵,由大写字母组成。矩阵的i行j列描述编号i一1和j-l的岛屿间的连接情况,若为“O”则表示有危桥相连:为“N”表示有普通的桥相连:为“X”表示没有桥相连。
|

Output

对于每组测试数据输出一行,如果他们都能完成愿望输出“Yes”,否则输出“No”。

Sample Input

4 0 1 1 2 3 1
XOXX
OXOX
XOXO
XXOX
4 0 2 1 1 3 2
XNXO
NXOX
XOXO
OXOX

Sample Output

Yes
No
数据范围
4<=N<50
O<=a1, a2, b1, b2<=N-1
1 <=an. b<=50

题解传送门

 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int N=,inf=;
struct ee{int to,next,f;}e[N*N*];
int S,T,cnt=,n,k,timer,m,u,v,w,a1,a2,an,b1,b2,bn;
char s[N];
long long ans;
int head[N],dis[N],pre[N],q[N],map[N][N];
bool inq[N];
void ins(int u,int v,int f){
e[++cnt].to=v,e[cnt].next=head[u],e[cnt].f=f,head[u]=cnt;
e[++cnt].to=u,e[cnt].next=head[v],e[cnt].f=,head[v]=cnt;
}
bool bfs(){
for (int i=;i<=T;i++) dis[i]=inf;
int h=,t=,now;
q[]=S;dis[S]=;
while(h!=t){
now=q[++h];
for (int i=head[now];i;i=e[i].next){
int v=e[i].to;
if (e[i].f&&dis[now]+<dis[v]){
dis[v]=dis[now]+;
if (v==T)return ;
q[++t]=v;
}
}
}
if (dis[T]==inf) return ; return ;
} int dinic(int now,int f){
if (now==T) return f;
int rest=f;
for (int i=head[now];i;i=e[i].next){
int v=e[i].to;
if (e[i].f&&dis[v]==dis[now]+){
int t=dinic(v,min(rest,e[i].f));
if (!t) dis[v]=;
e[i].f-=t;
e[i^].f+=t;
rest-=t;
}
}
return f-rest;
} void build(){
memset(head,,sizeof(head));cnt=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++){
if(map[i][j]==) ins(i,j,);
if(map[i][j]==) ins(i,j,inf);
}
} int main(){
while(scanf("%d%d%d%d%d%d%d",&n,&a1,&a2,&an,&b1,&b2,&bn)!=EOF){
a1++;a2++;b1++;b2++;
memset(map,,sizeof(map));
bool flag=;ans=;
T=;
for(int i=;i<=n;i++){
scanf("%s",s+);
for(int j=;j<=n;j++){
if(s[j]=='O') map[i][j]=;
if(s[j]=='N') map[i][j]=;
}
}
build();
ins(S,a1,an*);ins(a2,T,an*);
ins(S,b1,bn*);ins(b2,T,bn*);
while(bfs())
ans+=dinic(S,inf);
if (ans<(bn+an)*) flag=;
if(!flag){
ans=;
build();
ins(S,a1,an*);ins(a2,T,an*);
ins(S,b2,bn*);ins(b1,T,bn*);
while(bfs())
ans+=dinic(S,inf);
if (ans<(bn+an)*) flag=;
}
if(flag) printf("No\n");else printf("Yes\n");
}
}

【BZOJ 3504】[Cqoi2014]危桥的更多相关文章

  1. BZOJ 3504: [Cqoi2014]危桥 [最大流]

    3504: [Cqoi2014]危桥 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1407  Solved: 703[Submit][Status] ...

  2. BZOJ.3504.[CQOI2014]危桥(最大流ISAP)

    BZOJ 洛谷 这种题大多是多源多汇跑网络流.往返\(a_n/b_n\)次可以看做去\(a_n/b_n\)次,直接把危桥能走的次数看做\(1\). 先不考虑别的,直接按原图建模:危桥建双向边容量为\( ...

  3. bzoj 3504: [Cqoi2014]危桥

    #include<cstdio> #include<iostream> #include<cstring> #define M 100009 #define inf ...

  4. bzoj 3504: [Cqoi2014]危桥【最大流】

    妙啊,很容易想到连(s,a1,an)(s,b1,bn)(a2,t,an)(b2,t,bn),这样,但是可能会发生a1流到b2或者b1流到a2这种不合法情况 考虑跑两次,第二次交换b1b2,如果两次都合 ...

  5. 3504: [Cqoi2014]危桥

    3504: [Cqoi2014]危桥 链接 分析: 首先往返的可以转化为全是“往”,那么只要将容量除以2即可. 然后S向a1连边容量为an(除以2之前为2*an),S向a2连边容量为an,b1,b2向 ...

  6. 3504. [CQOI2014]危桥【最大流】

    Description Alice和Bob居住在一个由N座岛屿组成的国家,岛屿被编号为0到N-1.某些岛屿之间有桥相连,桥上的道路是双 向的,但一次只能供一人通行.其中一些桥由于年久失修成为危桥,最多 ...

  7. bzoj千题计划137:bzoj [CQOI2014]危桥

    http://www.lydsy.com/JudgeOnline/problem.php?id=3504 往返n遍,即单向2*n遍 危桥流量为2,普通桥流量为inf 原图跑一遍最大流 交换b1,b2再 ...

  8. Luogu3163 [CQOI2014]危桥 ---- 网络流 及 一个细节的解释

    Luogu3163 [CQOI2014]危桥 题意 有$n$个点和$m$条边,有些边可以无限次数的走,有些边这辈子只能走两次,给定两个起点和终点$a_1 --> a_2$(起点 --> 终 ...

  9. [CQOI2014]危桥

    题目描述 Alice和Bob居住在一个由N座岛屿组成的国家,岛屿被编号为0到N-1.某些岛屿之间有桥相连,桥上的道路是双 向的,但一次只能供一人通行.其中一些桥由于年久失修成为危桥,最多只能通行两次. ...

随机推荐

  1. hdu 4739 状压DP

    这里有状态压缩DP的好博文 题目:题目比较神,自己看题目吧 分析: 大概有两种思路: 1.dfs,判断正方形的话可以通过枚举对角线,大概每次减少4个三角形,加上一些小剪枝的话可以过. 2.状压DP,先 ...

  2. 【转】关于loadrunner中设置进程和线程的区别

    loadrunner中,在进行运行设置中有一项选择,是按进程运行Vuser或按线程运行Vuser?下面进行分别来讲: 1.按进程运行Vuser:Controller将使用驱动程序mdrv运行Vuser ...

  3. Smart法则

    设立目标不是一个很简单的事情.人们经常会犯一些基本的错误,即过于理想化.不符合客观情况.不容易执行落实,因此计划容易变成一种“美好的愿望”而已.在20世纪70年代,一位美国人为设立目标做出了一个简单而 ...

  4. C# 数据操作工具类

    CREATE PROCEDURE [dbo].[RecordFromPage] @SelectList VARCHAR(max), @TableSource VARCHAR(100), @Search ...

  5. C# 线程--第一单线程基础

    概念 什么是进程? 当一个程序被打开运行时,它就是一个进程.在进程中包括线程,进程可以由一个或多个线程组成. 什么是线程? 线程是程序执行流的最小单元.一个标准的线程由线程ID,当前指令指针(PC), ...

  6. php面向对象的基础

    这是第一次写博客,希望大家多多支持! 一.OOP概念 1.类(class) 它包括名称.方法.属性和事件.实际是它本身不是对象,因为它不存在内存中.当引用类的代码运行时,类的一个新的实例,及对象,就在 ...

  7. javascript数据结构——写一个二叉搜索树

    二叉搜索树就是左侧子节点值比根节点值小,右侧子节点值比根节点值大的二叉树. 照着书敲了一遍. function BinarySearchTree(){ var Node = function(key) ...

  8. AR模式

    AR模式 在ThinkPHP框架中,一共存在两种操作模式:ORM模式与AR模式 ORM模式:① 实例化模型 ② 创建数据对象组装数组 ③ 调用相关方法执行相关操作 AR模式:① 实例化模型 ② 把数据 ...

  9. 《HTML5与CSS3基础教程》学习笔记 ——Three Day

    第十一章 1.  box-sizing:border-box(让宽度和高度包含内边距和边框) 2.  clear让后面的元素显示在浮动元素的后面 3.  z-index只对只对绝对.固定.相对定位的元 ...

  10. hibernate get VS load

    1.  执行get方法:会立即加载对象      而执行load方法,若不适用该对象,则不会立即执行查询操作,而返回一个代理对象      get立即检索,load延迟检索  2.  load方法可能 ...