http://acm.hdu.edu.cn/showproblem.php?pid=3280

用了简单的枚举。

Equal Sum Partitions

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 453    Accepted Submission(s): 337

Problem Description
An equal sum partition of a sequence of numbers is a grouping of the numbers (in the same order as the original sequence) in such a way that each group has the same sum. For example, the sequence: 2 5 1 3 3 7 may be grouped as: (2 5) (1 3 3) (7) to yield an equal sum of 7.
Note: The partition that puts all the numbers in a single group is an equal sum partition with the sum equal to the sum of all the numbers in the sequence.
For this problem, you will write a program that takes as input a sequence of positive integers and returns the smallest sum for an equal sum partition of the sequence.
 
Input
The first line of input contains a single integer P, (1 ≤ P ≤ 1000), which is the number of data sets that follow. The first line of each data set contains the data set number, followed by a space, followed by a decimal integer M, (1 ≤ M ≤ 10000), giving the total number of integers in the sequence. The remaining line(s) in the dataset consist of the values, 10 per line, separated by a single space. The last line in the dataset may contain less than 10 values.
 
Output
For each data set, generate one line of output with the following values: The data set number as a decimal integer, a space, and the smallest sum for an equal sum partition of the sequence.
 
Sample Input
3
1 6
2 5 1 3 3 7
2 6
1 2 3 4 5 6
3 20
1 1 2 1 1 2 1 1 2 1
1 2 1 1 2 1 1 2 1 1
 
Sample Output
1 7
2 21
3 2
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int a[];
int main()
{
int i,j,t,n,m,sum,cursum,flag ,ans;
scanf("%d",&t);
while(t--)
{
flag=;
memset(a,,sizeof(a));
scanf("%d%d",&n,&m);
for(i=;i<m;i++)
scanf("%d",&a[i]);
for(i=;i<m;i++)
{
sum=;
for(j=;j<=i;j++)
sum+=a[j];
cursum=;
while(j<m)
{
cursum+=a[j];
if(cursum>sum)
break;
else if(cursum==sum)
{
j++;
if(j==m)
{
printf("%d %d\n",n,sum);
flag=;
}
cursum=;
}
else
j++;
if(flag)
break;
} if(flag)
break;
}
if(i==m)
printf("%d %d\n",n,sum);
}
return ;
}
/*
3
1 6
2 5 1 3 3 7
2 6
1 2 3 4 5 6
3 20
1 1 2 1 1 2 1 1 2 1
1 2 1 1 2 1 1 2 1 1
*/

区间dp

#include<iostream>
#include<cstdio>
using namespace std;
int dp[][],ans[];
int main()
{
int t,n,m,i,j,k,g,a[];
cin>>t;
while(t--)
{
cin>>n>>m;
ans[]=;
for(i=;i<=m;i++)
{
cin>>a[i];
ans[i]=ans[i-]+a[i];
}
for(k=;k<m;k++)//k不能从1-m,虽然同样个数相同,但是j=2开始,就会使区间减少了一层,
{ //比如i=1,j=2就没有这个区间。
for(i=;i<=m-k;i++)
{
j=i+k;
dp[i][j]=ans[j]-ans[i-];//初始化dp,求出每个区间的和。
for(g=i;g<j;g++)
{//三者的顺序可以随便调换。
if((ans[g]-ans[i-])==dp[g+][j])
dp[i][j]=min(dp[i][j],dp[g+][j]);
if(dp[i][g]==ans[j]-ans[g])
dp[i][j]=min(dp[i][j],dp[i][g]);
if(dp[i][g]==dp[g+][j])
dp[i][j]=min(dp[i][j],dp[i][g]); } }
}
printf("%d %d\n",n,dp[][m]);
} }
/*
3
1 6
2 5 1 3 3 7
2 6
1 2 3 4 5 6
3 20
1 1 2 1 1 2 1 1 2 1
1 2 1 1 2 1 1 2 1 1
*/

HDU-3280 Equal Sum Partitions的更多相关文章

  1. HDU 3280 Equal Sum Partitions(二分查找)

    Equal Sum Partitions Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  2. HDU 1024 Max Sum Plus Plus --- dp+滚动数组

    HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...

  3. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  4. HDU 1244 Max Sum Plus Plus Plus

    虽然这道题看起来和 HDU 1024  Max Sum Plus Plus 看起来很像,可是感觉这道题比1024要简单一些 前面WA了几次,因为我开始把dp[22][maxn]写成dp[maxn][2 ...

  5. hdu3280Equal Sum Partitions (区间DP)

    Problem Description An equal sum partition of a sequence of numbers is a grouping of the numbers (in ...

  6. D.6661 - Equal Sum Sets

    Equal Sum Sets Let us consider sets of positive integers less than or equal to n. Note that all elem ...

  7. hdu 3415 Max Sum of Max-K-sub-sequence(单调队列)

    题目链接:hdu 3415 Max Sum of Max-K-sub-sequence 题意: 给你一串形成环的数,让你找一段长度不大于k的子段使得和最大. 题解: 我们先把头和尾拼起来,令前i个数的 ...

  8. HDU 1024 Max Sum Plus Plus (动态规划)

    HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...

  9. 698. Partition to K Equal Sum Subsets

    Given an array of integers nums and a positive integer k, find whether it's possible to divide this ...

随机推荐

  1. JavaC 编译目录下所有的UTF-8编码的java文件

    javac -encoding UTF-8  *.java

  2. jvm垃圾回收的时间问题

    1.系统崩溃前的一些现象: 每次垃圾回收的时间越来越长,由之前的10ms延长到50ms左右,FullGC的时间也有之前的0.5s延长到4.5s FullGC的次数越来越多,最频繁时隔不到1分钟就进行一 ...

  3. iOS 开发-- Runtime 1小时入门教程

    1小时让你知道什么是Objective-C Runtime,并对它有一定的基本了解,可以在开发过程中运用自如. 三.Objective-C Runtime到底是什么东西? 简而言之,Objective ...

  4. 对象的类型转换P109

    类作为一种应用数据类型,和基本数据类型的变量一样.不同类中存在对象与对象之间的类型转问题,对象的类型转换只能在  具有继承关系的 父类对象-----子类对象 之间进行   子类通常比父类拥有更多的域和 ...

  5. C#基础练习(事件登陆案例)

    Form1的后台代码: namespace _08事件登陆案例 {     public partial class Form1 : Form     {         public Form1() ...

  6. Java API —— Random类

    1.Random类概述         此类用于产生随机数         如果用相同的种子创建两个 Random 实例,则对每个实例进行相同的方法调用序列,它们将生成并返回相同的数字序列. 2.构造 ...

  7. [Mongo] error inserting documents: BSONObj size is invalid (mongoimport mongorestore 数据备份恢复)

    解决办法如下, ./mongoimport -port 6066 -d xxx -c xxx --batchSize=10 /root/mong_data/test/xxx 原因转自 http://b ...

  8. hibernate--query接口初步

    Query session.createQuery(String hql)方法; * hibernate的session.createQuery()方法是使用HQL(hibernate的查询语句)语句 ...

  9. Java知识积累——单元测试和JUnit(一)

    说起单元测试,刚毕业或者没毕业的人可能大多停留在课本讲述的定义阶段,至于具体是怎么定义的,估计也不会有太多人记得.我们的教育总是这样让人“欣 慰”.那么什么是单元测试呢?具体科学的定义咱就不去关心了, ...

  10. DirectSound播放PCM(可播放实时采集的音频数据)

    前言 该篇整理的原始来源为http://blog.csdn.net/leixiaohua1020/article/details/40540147.非常感谢该博主的无私奉献,写了不少关于不同多媒体库的 ...