http://acm.hdu.edu.cn/showproblem.php?pid=3280

用了简单的枚举。

Equal Sum Partitions

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 453    Accepted Submission(s): 337

Problem Description
An equal sum partition of a sequence of numbers is a grouping of the numbers (in the same order as the original sequence) in such a way that each group has the same sum. For example, the sequence: 2 5 1 3 3 7 may be grouped as: (2 5) (1 3 3) (7) to yield an equal sum of 7.
Note: The partition that puts all the numbers in a single group is an equal sum partition with the sum equal to the sum of all the numbers in the sequence.
For this problem, you will write a program that takes as input a sequence of positive integers and returns the smallest sum for an equal sum partition of the sequence.
 
Input
The first line of input contains a single integer P, (1 ≤ P ≤ 1000), which is the number of data sets that follow. The first line of each data set contains the data set number, followed by a space, followed by a decimal integer M, (1 ≤ M ≤ 10000), giving the total number of integers in the sequence. The remaining line(s) in the dataset consist of the values, 10 per line, separated by a single space. The last line in the dataset may contain less than 10 values.
 
Output
For each data set, generate one line of output with the following values: The data set number as a decimal integer, a space, and the smallest sum for an equal sum partition of the sequence.
 
Sample Input
3
1 6
2 5 1 3 3 7
2 6
1 2 3 4 5 6
3 20
1 1 2 1 1 2 1 1 2 1
1 2 1 1 2 1 1 2 1 1
 
Sample Output
1 7
2 21
3 2
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int a[];
int main()
{
int i,j,t,n,m,sum,cursum,flag ,ans;
scanf("%d",&t);
while(t--)
{
flag=;
memset(a,,sizeof(a));
scanf("%d%d",&n,&m);
for(i=;i<m;i++)
scanf("%d",&a[i]);
for(i=;i<m;i++)
{
sum=;
for(j=;j<=i;j++)
sum+=a[j];
cursum=;
while(j<m)
{
cursum+=a[j];
if(cursum>sum)
break;
else if(cursum==sum)
{
j++;
if(j==m)
{
printf("%d %d\n",n,sum);
flag=;
}
cursum=;
}
else
j++;
if(flag)
break;
} if(flag)
break;
}
if(i==m)
printf("%d %d\n",n,sum);
}
return ;
}
/*
3
1 6
2 5 1 3 3 7
2 6
1 2 3 4 5 6
3 20
1 1 2 1 1 2 1 1 2 1
1 2 1 1 2 1 1 2 1 1
*/

区间dp

#include<iostream>
#include<cstdio>
using namespace std;
int dp[][],ans[];
int main()
{
int t,n,m,i,j,k,g,a[];
cin>>t;
while(t--)
{
cin>>n>>m;
ans[]=;
for(i=;i<=m;i++)
{
cin>>a[i];
ans[i]=ans[i-]+a[i];
}
for(k=;k<m;k++)//k不能从1-m,虽然同样个数相同,但是j=2开始,就会使区间减少了一层,
{ //比如i=1,j=2就没有这个区间。
for(i=;i<=m-k;i++)
{
j=i+k;
dp[i][j]=ans[j]-ans[i-];//初始化dp,求出每个区间的和。
for(g=i;g<j;g++)
{//三者的顺序可以随便调换。
if((ans[g]-ans[i-])==dp[g+][j])
dp[i][j]=min(dp[i][j],dp[g+][j]);
if(dp[i][g]==ans[j]-ans[g])
dp[i][j]=min(dp[i][j],dp[i][g]);
if(dp[i][g]==dp[g+][j])
dp[i][j]=min(dp[i][j],dp[i][g]); } }
}
printf("%d %d\n",n,dp[][m]);
} }
/*
3
1 6
2 5 1 3 3 7
2 6
1 2 3 4 5 6
3 20
1 1 2 1 1 2 1 1 2 1
1 2 1 1 2 1 1 2 1 1
*/

HDU-3280 Equal Sum Partitions的更多相关文章

  1. HDU 3280 Equal Sum Partitions(二分查找)

    Equal Sum Partitions Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  2. HDU 1024 Max Sum Plus Plus --- dp+滚动数组

    HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...

  3. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  4. HDU 1244 Max Sum Plus Plus Plus

    虽然这道题看起来和 HDU 1024  Max Sum Plus Plus 看起来很像,可是感觉这道题比1024要简单一些 前面WA了几次,因为我开始把dp[22][maxn]写成dp[maxn][2 ...

  5. hdu3280Equal Sum Partitions (区间DP)

    Problem Description An equal sum partition of a sequence of numbers is a grouping of the numbers (in ...

  6. D.6661 - Equal Sum Sets

    Equal Sum Sets Let us consider sets of positive integers less than or equal to n. Note that all elem ...

  7. hdu 3415 Max Sum of Max-K-sub-sequence(单调队列)

    题目链接:hdu 3415 Max Sum of Max-K-sub-sequence 题意: 给你一串形成环的数,让你找一段长度不大于k的子段使得和最大. 题解: 我们先把头和尾拼起来,令前i个数的 ...

  8. HDU 1024 Max Sum Plus Plus (动态规划)

    HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...

  9. 698. Partition to K Equal Sum Subsets

    Given an array of integers nums and a positive integer k, find whether it's possible to divide this ...

随机推荐

  1. hdu 4704 Sum

    思路:对于给定的n,s(i)即将n分解为i个数的组合数,也就是在n-1个位置插入i-1个板即C(n-1,i-1); ∑S=2^(n-1); phi(1000000007)=1000000006; 对于 ...

  2. [转]HttpClient的超时用法小记

    HttpClient的超时用法小记 HttpClient在使用中有两个超时时间,是一直接触和使用的,由于上次工作中使用httpClient造成了系统悲剧的情况,特地对它的两个超时时间进行了小小的测试, ...

  3. 【转】Windows平台SSH登录Linux并使用图形化界面

    备注:经验证本文提供的方法可行且比使用VNC简洁一些.略有修改.   [日期:2011-09-06] 来源:Linux社区  作者:tianhuadihuo   http://www.linuxidc ...

  4. SaaS系列介绍之十五: SaaS知识重用

    1 建立并积累自己的开发体系 遵行业界的规定又有自己的特色是我们所追求的目标.成功的软件公司都有丰富而可复用的代码组件,几行代码在单个系统里可能无足轻重,但一旦可在大量的系统中可重复使用那就是价值不菲 ...

  5. java 泛型类

     Java泛型中的标记符含义:  E - Element (在集合中使用,因为集合中存放的是元素) T - Type(Java 类) K - Key(键) V - Value(值) N - Numbe ...

  6. 常用Shell的路径

    #define REG_SHELL "HKEY_CURRENT_USER\\Software\\Microsoft\\Windows\\CurrentVersion\\Explorer\\S ...

  7. C# 常用对象的的修饰符

    class(类) 1.internal 表示类只能在当然程序集中访问,类默认修饰符 2.public 表示所有地方都可以访问,与internal是互斥的 3.abstract 抽象类,不能被实例化,只 ...

  8. RedHat6配置yum源 (32位)

    由于 redhat的yum在线更新是收费的,如果没有注册的话不能使用, 如果要使用,需将redhat的yum卸载后,重启安装,再配置其他源,以下为详细过程: 1.删除redhat原有的yum rpm ...

  9. hibernate--lazy(懒加载)属性

    关联映射文件中<class>标签中的lazy(懒加载)属性 Lazy(懒加载):只有在正真使用该对象时,才会创建这个对象 Hibernate中的lazy(懒加载):只有我们在正真使用时,它 ...

  10. bzoj1412: [ZJOI2009]狼和羊的故事

    空地之间开始没有连然后一直WA...题意混乱...尴尬. #include<cstdio> #include<cstring> #include<iostream> ...