POJ 1860 Currency Exchange (bellman-ford判负环)
Currency Exchange
题目链接:
http://acm.hust.edu.cn/vjudge/contest/122685#problem/E
Description
Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real R AB, C AB, R BA and C BA - exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations.
Input
The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1
Output
If Nick can increase his wealth, output YES, in other case output NO to the output file.
Sample Input
3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00
Sample Output
YES
Hint
##题意:
给出两种货币之间的汇率及税价.
求能否经过一定的兑换过程使得价值增加.
##题解:
抽象成图模型,兑换途径即为路径.
问题转换为判断图中是否存在一个正环.
直接用bellman-ford判负环的方法即可.
注意初始状态:dis[start] = 初始时的钱.
##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 310
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;
int sign(double x){
if(fabs(x)<eps) return 0;
return x<0? -1:1;
}
int m,n,s;
double cur;
int edges, u[maxn], v[maxn];
double rate[maxn], cost[maxn];
int first[maxn], next[maxn];
//初始化edge和first
double dis[maxn];
void add_edge(int s, int t, double a, double b) {
u[edges] = s; v[edges] = t;
rate[edges] = a; cost[edges] = b;
next[edges] = first[s];
first[s] = edges++;
}
bool bellman(int s) {
for(int i=1; i<=n; i++) dis[i] = -1;
dis[s] = cur; //!!!
for(int i=1; i<=n; i++) {
for(int e=0; e<edges; e++) {
double tmp = (dis[u[e]]-cost[e])*rate[e];
if(sign(dis[v[e]]-tmp) < 0) {
dis[v[e]] = tmp;
if(i == n) return 0;
}
}
}
return 1;
}
int main(int argc, char const *argv[])
{
//IN;
while(scanf("%d %d %d %lf", &n,&m,&s,&cur) != EOF)
{
memset(first, -1, sizeof(first));
edges = 0;
for(int i=1; i<=m; i++) {
int u,v; double ra,rb,ca,cb;
scanf("%d %d %lf %lf %lf %lf", &u,&v,&ra,&ca,&rb,&cb);
add_edge(u,v,ra,ca);
add_edge(v,u,rb,cb);
}
if(!bellman(s)) puts("YES");
else puts("NO");
}
return 0;
}
POJ 1860 Currency Exchange (bellman-ford判负环)的更多相关文章
- POJ 1860 Currency Exchange【SPFA判环】
Several currency exchange points are working in our city. Let us suppose that each point specializes ...
- (简单) POJ 1860 Currency Exchange,SPFA判圈。
Description Several currency exchange points are working in our city. Let us suppose that each point ...
- POJ 2240 Arbitrage (Bellman Ford判正环)
Arbitrage Time Limit: 1000MS Memory Limit: 65536K Total Submissions:27167 Accepted: 11440 Descri ...
- Currency Exchange(SPFA判负环)
Several currency exchange points are working in our city. Let us suppose that each point specializes ...
- 最短路(Bellman_Ford) POJ 1860 Currency Exchange
题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...
- POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)
POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...
- POJ 1860——Currency Exchange——————【最短路、SPFA判正环】
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
- POJ 1860 Currency Exchange 最短路+负环
原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Tota ...
- POJ 1860 Currency Exchange + 2240 Arbitrage + 3259 Wormholes 解题报告
三道题都是考察最短路算法的判环.其中1860和2240判断正环,3259判断负环. 难度都不大,可以使用Bellman-ford算法,或者SPFA算法.也有用弗洛伊德算法的,笔者还不会SF-_-…… ...
随机推荐
- Apple开发者账号申请学习方式
http://jingyan.baidu.com/article/414eccf610e7c76b431f0a94.html https://developer.apple.com/wwdc/sche ...
- poj 3101 Astronomy (java 分数的最小公倍数 gcd)
题目链接 要用大数,看了别人的博客,用java写的. 题意:求n个运动周期不完全相同的天体在一条直线上的周期. 分析:两个星球周期为a,b.则相差半周的长度为a*b/(2*abs(a-b)),对于n个 ...
- java怎样读取数据库表中字段的数据类型?
用DriverManager.getConnection()得到connect, 用connect.getMetaData()得到 DatabaseMetaData, 用 DatabaseMetaDa ...
- Qt之运行一个实例进程
简述 发布程序的时候,我们往往会遇到这种情况: 只需要用户运行一个实例进程 用户可以同时运行多个实例进程 一个实例进程的软件有很多,例如:360.酷狗- 多个实例进程的软件也很多,例如:Visual ...
- fancybox 关闭弹出窗口 parent.$.fancybox.close(); 无反应 fancybox 关闭弹出窗口父页面自动刷新,弹出子窗口前后事件
当我们在父页面使用 fancybox 弹出窗口后,如果想自己手动关闭,则可以 function Cancel() { parent.$.fancybox.close(); } 如果关闭没有反应,最好看 ...
- codeforces 334A - Candy Bags
忘了是偶数了,在纸上画奇数画了半天... #include<cstdio> #include<cstring> #include<cstdlib> #include ...
- django - settings
1.doc - https://docs.djangoproject.com/en/1.6/topics/settings/ from django.conf import settings # 加载 ...
- Java [Leetcode 206]Reverse Linked List
题目描述: Reverse a singly linked list. 解题思路: 使用递归或者迭代的方法. 代码如下: 方法一:递归 /** * Definition for singly-link ...
- 【DFS】NYOJ-82 迷宫寻宝(一)-条件迷宫问题
[题目链接:NYOJ-82] #include<iostream> #include<cstring> using namespace std; struct node{ in ...
- Jabber/XMPP协议与架构
一.概述 由Jeremie Miller于1998年开始这个项目.Jabber是一个开放源码形式组织产生的网络实时通信协议,第一个公开版本于2000年5月发行.Jabber已经由IETF XMPP协议 ...