POJ 1860 Currency Exchange (bellman-ford判负环)
Currency Exchange
题目链接:
http://acm.hust.edu.cn/vjudge/contest/122685#problem/E
Description
Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real R AB, C AB, R BA and C BA - exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations.
Input
The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1
Output
If Nick can increase his wealth, output YES, in other case output NO to the output file.
Sample Input
3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00
Sample Output
YES
Hint
##题意:
给出两种货币之间的汇率及税价.
求能否经过一定的兑换过程使得价值增加.
##题解:
抽象成图模型,兑换途径即为路径.
问题转换为判断图中是否存在一个正环.
直接用bellman-ford判负环的方法即可.
注意初始状态:dis[start] = 初始时的钱.
##代码:
``` cpp
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define LL long long
#define eps 1e-8
#define maxn 310
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;
int sign(double x){
if(fabs(x)<eps) return 0;
return x<0? -1:1;
}
int m,n,s;
double cur;
int edges, u[maxn], v[maxn];
double rate[maxn], cost[maxn];
int first[maxn], next[maxn];
//初始化edge和first
double dis[maxn];
void add_edge(int s, int t, double a, double b) {
u[edges] = s; v[edges] = t;
rate[edges] = a; cost[edges] = b;
next[edges] = first[s];
first[s] = edges++;
}
bool bellman(int s) {
for(int i=1; i<=n; i++) dis[i] = -1;
dis[s] = cur; //!!!
for(int i=1; i<=n; i++) {
for(int e=0; e<edges; e++) {
double tmp = (dis[u[e]]-cost[e])*rate[e];
if(sign(dis[v[e]]-tmp) < 0) {
dis[v[e]] = tmp;
if(i == n) return 0;
}
}
}
return 1;
}
int main(int argc, char const *argv[])
{
//IN;
while(scanf("%d %d %d %lf", &n,&m,&s,&cur) != EOF)
{
memset(first, -1, sizeof(first));
edges = 0;
for(int i=1; i<=m; i++) {
int u,v; double ra,rb,ca,cb;
scanf("%d %d %lf %lf %lf %lf", &u,&v,&ra,&ca,&rb,&cb);
add_edge(u,v,ra,ca);
add_edge(v,u,rb,cb);
}
if(!bellman(s)) puts("YES");
else puts("NO");
}
return 0;
}
POJ 1860 Currency Exchange (bellman-ford判负环)的更多相关文章
- POJ 1860 Currency Exchange【SPFA判环】
Several currency exchange points are working in our city. Let us suppose that each point specializes ...
- (简单) POJ 1860 Currency Exchange,SPFA判圈。
Description Several currency exchange points are working in our city. Let us suppose that each point ...
- POJ 2240 Arbitrage (Bellman Ford判正环)
Arbitrage Time Limit: 1000MS Memory Limit: 65536K Total Submissions:27167 Accepted: 11440 Descri ...
- Currency Exchange(SPFA判负环)
Several currency exchange points are working in our city. Let us suppose that each point specializes ...
- 最短路(Bellman_Ford) POJ 1860 Currency Exchange
题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...
- POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)
POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...
- POJ 1860——Currency Exchange——————【最短路、SPFA判正环】
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
- POJ 1860 Currency Exchange 最短路+负环
原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Tota ...
- POJ 1860 Currency Exchange + 2240 Arbitrage + 3259 Wormholes 解题报告
三道题都是考察最短路算法的判环.其中1860和2240判断正环,3259判断负环. 难度都不大,可以使用Bellman-ford算法,或者SPFA算法.也有用弗洛伊德算法的,笔者还不会SF-_-…… ...
随机推荐
- Oracle数据库ORA-12154: TNS: 无法解析指定的连接标识符详解
ORA-12154: TNS: 无法解析指定的连接标识符(转自http://www.cnblogs.com/psforever/p/3929064.html) 相信使用过Oracle数据库的人一定碰到 ...
- POJ 1707 Sum of powers(伯努利数)
题目链接:http://poj.org/problem?id=1707 题意:给出n 在M为正整数且尽量小的前提下,使得n的系数均为整数. 思路: i64 Gcd(i64 x,i64 y) { if( ...
- [UESTC1059]秋实大哥与小朋友(线段树, 离散化)
题目链接:http://acm.uestc.edu.cn/#/problem/show/1059 普通线段树+离散化,关键是……离散化后建树和查询都要按照基本法!!!RE了不知道多少次………………我真 ...
- uva10375 Choose and divide
唯一分解定理. 挨个记录下每个质数的指数. #include<cstdio> #include<algorithm> #include<cstring> #incl ...
- UVa 1252 (状压DP + 记忆化搜索) Twenty Questions
题意: 有n个长为m的各不相同的二进制数(允许存在前导0),别人已经事先想好n个数中的一个数W,你要猜出这个数. 每次只可以询问该数的第K为是否为1. 问采用最优询问策略,则最少需要询问多少次能保证猜 ...
- javascript中的关键字和保留字
javascript中关键字的问题,将名称替换了下,确实就没有问题了.现在将它的关键字和保留字贴出来,便于日后查看和避免在次出现类似的问题. 1 关键字breakcasecatchcontinuede ...
- [转]SQL、LINQ、Lambda
原文链接:http://www.cnblogs.com/mr-hero/p/3532631.html SQL LinqToSql Lambda 1. 查询Student表中的所有记录的Snam ...
- Struts框架搭建时所遇到的问题
问题一:Unable to load configuration. - bean - jar:file:/D:/Tomcat%206.0/webapps/bar/WEB-INF 原 因:可 ...
- java分层架构概念
转自:http://www.cnblogs.com/bdqnbenet/p/4924778.html service是业务层 DAO (Data Access Object) 数据访问 1.JAVA中 ...
- Java [Leetcode 67]Add Binary
题目描述: Given two binary strings, return their sum (also a binary string). For example,a = "11&qu ...