Title :

Given an array S of n integers, find three integers in S such that the sum is closest to a given number, target. Return the sum of the three integers. You may assume that each input would have exactly one solution.

    For example, given array S = {-1 2 1 -4}, and target = 1.

    The sum that is closest to the target is 2. (-1 + 2 + 1 = 2).
int threeSumClosest(vector<int> &num, int target){
sort(num.begin(),num.end());
int min = INT_MAX;
int result;
for (int i = ; i < num.size()-; i++){
if (i > && num[i] == num[i-])
continue;
int left = i+;
int right = num.size()-;
int goal = target - num[i];
while (left < right){
int diff = abs(target - num[left] - num[right] - num[i]);
if (diff < min){
min = diff;
result = num[left] + num[right] + num[i];
}
if (num[left] + num[right] < goal){
while (left < right && (num[left] == num[left+]))
left++;
left++;
}else if (num[left] + num[right] > goal){
while (left < right && (num[right] == num[right-]))
right--;
right--;
}else{
return target;
}
}
}
return result;
}

LeetCode: 3SumClosest的更多相关文章

  1. [Leetcode] 3sum-closest 给定值,最为相近的3数之和

    Given an array S of n integers, find three integers in S such that the sum is closest to a given num ...

  2. LeetCode 3sum-closest 题解

    思路 排序 枚举一个数a 双指针移动法确定b和c 求和,更新最接近的值 复杂度 T(n)=O(n2)&ThickSpace;M(n)=O(1)T(n)=O(n^2) \; M(n)=O(1)T ...

  3. leetcode 日记 3sumclosest java

    思路一为遍历: public int thirdSolution(int[] nums, int target) { int result = nums[0] + nums[1] + nums[2]; ...

  4. [LeetCode] 3Sum Closest 最近三数之和

    Given an array S of n integers, find three integers in S such that the sum is closest to a given num ...

  5. leetcode算法分类

    利用堆栈:http://oj.leetcode.com/problems/evaluate-reverse-polish-notation/http://oj.leetcode.com/problem ...

  6. leetcode bugfree note

    463. Island Perimeterhttps://leetcode.com/problems/island-perimeter/就是逐一遍历所有的cell,用分离的cell总的的边数减去重叠的 ...

  7. LeetCode题目分类

    利用堆栈:http://oj.leetcode.com/problems/evaluate-reverse-polish-notation/http://oj.leetcode.com/problem ...

  8. <转>LeetCode 题目总结/分类

    原链接:http://blog.csdn.net/yangliuy/article/details/44514495 注:此分类仅供大概参考,没有精雕细琢.有不同意见欢迎评论~ 利用堆栈:http:/ ...

  9. LeetCode (13): 3Sum Closest

    https://leetcode.com/problems/3sum-closest/ [描述] Given an array S of n integers, find three integers ...

随机推荐

  1. 层次数据结构字符串处理,split函数使用

    String str1 = "11@22#33,44,55,#bb#cc,dd,ee,#@DDD@TTT#999,#@"; String[] CX = str1.split(&qu ...

  2. [转]剖析ASP.Net MVC Application

    http://www.cnblogs.com/errorif/archive/2009/02/13/1389927.html 为了完全了解Asp.net MVC是怎样工作的,我将从零开始创建一个MVC ...

  3. Winform基础 -- 菜单

    快速创建默认菜单 使用控件 MenuStrip : 点击菜单的右上方小三角:选择 [插入标准项] 即可显现出标准的菜单格式: 如果想添加更多的菜单项,可以在   [请在此处键入] 处输入菜单项的名称 ...

  4. js 后台异步执行

    public void AlertMsg(string msg, bool async) { string script = string.Format("alert('{0}'); &qu ...

  5. Eclipse 编译错误 Access restriction:The type *** is not accessible due to restriction on... 解决方案

    报错: Access restriction:The type JPEGCodec is not accessible due to restriction on required library C ...

  6. python自定义函数在Python解释器中调用

    https://docs.python.org/2.7/tutorial/modules.html Modules If you quit from the Python interpreter an ...

  7. 李洪强iOS开发支付集成之支付宝支付

    iOS开发支付集成之支付宝支付 下载支付宝SDK 首先是开发包下载,还是比较难发现的,网上以前文章中的链接都打不开,我找了好久才找到的.最新的地址在这里(注意的是下载出来的SDK包里面并没有传说中的开 ...

  8. *[topcoder]ChooseTheBestOne

    https://www.topcoder.com/stat?c=problem_statement&pm=13146&rd=15852 // Need carefully calc t ...

  9. 不要将缓存服务器与Tomcat放在单台机器上,否则出现竞争内存问题

    缓存分为本地缓存和远程分布式缓存,本地缓存访问速度更快但缓存数据量有限,同时存在与应用程序争用内存的情况. 1.不要将缓存服务器与Tomcat放在单台机器上,否则出现竞争内存问题 2.不要将缓存服务器 ...

  10. MVC下基于DotNetOpenAuth 实现SSO单点登录

    具体官网可以查看:http://dotnetopenauth.net/,托管地址:https://github.com/DotNetOpenAuth/DotNetOpenAuth 可能需要FQ 博客园 ...