Description

  In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons each). Each button has a light. When a button is pressed, that button and each of its (up to four) neighbors above, below, right and left, has the state of its light reversed. (If on, the light is turned off; if off, the light is turned on.) Buttons in the corners change the state of 3 buttons; buttons on an edge change the state of 4 buttons and other buttons change the state of 5. For example, if the buttons marked X on the left below were to be pressed,the display would change to the image on the right. 

The aim of the game is, starting from any initial set of lights on in the display, to press buttons to get the display to a state where all lights are off. When adjacent buttons are pressed, the action of one button can undo the effect of another. For instance, in the display below, pressing buttons marked X in the left display results in the right display.Note that the buttons in row 2 column 3 and row 2 column 5 both change the state of the button in row 2 column 4,so that, in the end, its state is unchanged. 

Note: 
1. It does not matter what order the buttons are pressed. 
2. If a button is pressed a second time, it exactly cancels the effect of the first press, so no button ever need be pressed more than once. 
3. As illustrated in the second diagram, all the lights in the first row may be turned off, by pressing the corresponding buttons in the second row. By repeating this process in each row, all the lights in the first 
four rows may be turned out. Similarly, by pressing buttons in columns 2, 3 ?, all lights in the first 5 columns may be turned off. 
Write a program to solve the puzzle.

Input

  The first line of the input is a positive integer n which is the number of puzzles that follow. Each puzzle will be five lines, each of which has six 0 or 1 separated by one or more spaces. A 0 indicates that the light is off, while a 1 indicates that the light is on initially.

Output

  For each puzzle, the output consists of a line with the string: "PUZZLE #m", where m is the index of the puzzle in the input file. Following that line, is a puzzle-like display (in the same format as the input) . In this case, 1's indicate buttons that must be pressed to solve the puzzle, while 0 indicate buttons, which are not pressed. There should be exactly one space between each 0 or 1 in the output puzzle-like display.

  翻译:给你一个5*6的初始状态,要求你给出一个5*6的操作矩阵,要求:当操作是1时,代表把棋盘的对应位置和它相邻的地方的状态改变(1变为0,0变为1),0则不进行操作。要求操作矩阵满足操作后棋盘状态全部为0.保证有解且唯一
  提示:按两下和不按是一样的,所以只有按不按,没有按几下的区别。也没有先按后按的区别。
  就是解异或方程。。
  每个点按不按^周围的点按不按^最开始情况=0
  转换一下。。
  周围的点^每个点按不按=最开始情况
  枚举每个点,之后就是喜闻乐见的高斯消元时间了。。(ps.如果消i元素,但是你的f[i][i]=0的话,需要找一行不等于0的行swap一下)
  代码:
  

 #include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm> using namespace std; int f[][],ans[][],ga[][],cnt=; void print()
{
cnt++;
printf("PUZZLE #%d\n",cnt);
for(int i=;i<=;i++)
{
for(int j=;j<=;j++)
printf("%d ",ans[i][j]);
printf("\n");
}
} void Solve()
{
for(int i=;i>=;i--)
{
int x=i/+,y=i%;
if(!y) y+=,x--;
ans[x][y]=ga[i][];
for(int j=i+;j<=;j++)
if(ga[i][j]){
int x1=j/+,y1=j%;
if(!y1) y1+=,x1--;
ans[x][y]=ans[x][y]^ans[x1][y1];
}
}
} void swapp(int l,int r)
{
for(int i=;i<=;i++)
swap(ga[l][i],ga[r][i]);
} void find(int n)
{
for(int i=n+;i<=;i++)
if(ga[i][n]){swapp(i,n);return;}
} void Guass()
{
for(int i=;i<=;i++)//消第几个元
{
if(!ga[i-][i-])find(i-);
if(!ga[i-][i-])continue;
for(int j=i;j<=;j++)//第几个方程
{
if(!ga[j][i-])continue;
for(int k=i;k<=;k++)//方程的第几项
ga[j][k]=ga[j][k]^ga[i-][k];
}
}
Solve();
} void set()
{
for(int i=;i<=;i++)
for(int j=;j<=;j++){
ga[(i-)*+j][]=f[i][j];
ga[(i-)*+j][(i-)*+j]=; //自己和上下左右是对自己有影响的点
if(j!=) ga[(i-)*+j][(i-)*+j-]=;
if(j!=) ga[(i-)*+j][(i-)*+j+]=;
if(i!=) ga[(i-)*+j][i*+j]=;
if(i!=) ga[(i-)*+j][(i-)*+j]=;
}
return;
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
for(int i=;i<=;i++)
for(int j=;j<=;j++)
scanf("%d",&f[i][j]);
set();
Guass();
print();
memset(f,,sizeof(f));
memset(ga,,sizeof(ga));
memset(ans,,sizeof(ans));
}
return ;
}
  
  

【高斯消元】Poj 1222:EXTENDED LIGHTS OUT的更多相关文章

  1. POJ 1222 EXTENDED LIGHTS OUT(翻转+二维开关问题)

    POJ 1222 EXTENDED LIGHTS OUT 今天真是完美的一天,这是我在poj上的100A,留个纪念,马上就要期中考试了,可能后面几周刷题就没这么快了,不管怎样,为下一个200A奋斗, ...

  2. POJ 1222 EXTENDED LIGHTS OUT(高斯消元解异或方程组)

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10835   Accepted: 6 ...

  3. POJ 1222 EXTENDED LIGHTS OUT(高斯消元)

    [题目链接] http://poj.org/problem?id=1222 [题目大意] 给出一个6*5的矩阵,由0和1构成,要求将其全部变成0,每个格子和周围的四个格子联动,就是说,如果一个格子变了 ...

  4. POJ 1222 EXTENDED LIGHTS OUT(高斯消元)题解

    题意:5*6的格子,你翻一个地方,那么这个地方和上下左右的格子都会翻面,要求把所有为1的格子翻成0,输出一个5*6的矩阵,把要翻的赋值1,不翻的0,每个格子只翻1次 思路:poj 1222 高斯消元详 ...

  5. POJ 1222 EXTENDED LIGHTS OUT(高斯消元解XOR方程组)

    http://poj.org/problem?id=1222 题意:现在有5*6的开关,1表示亮,0表示灭,按下一个开关后,它上下左右的灯泡会改变亮灭状态,要怎么按使得灯泡全部处于灭状态,输出方案,1 ...

  6. POJ 1222 EXTENDED LIGHTS OUT (高斯消元)

    题目链接 题意:5*6矩阵中有30个灯,操作一个灯,周围的上下左右四个灯会发生相应变化 即由灭变亮,由亮变灭,如何操作使灯全灭? 题解:这个问题是很经典的高斯消元问题.同一个按钮最多只能被按一次,因为 ...

  7. Poj 1222 EXTENDED LIGHTS OUT

    题目大意:给你一个5*6的格子,每个格子中有灯(亮着1,暗着0),每次你可以把一个暗的点亮(或者亮的熄灭)然后它上下左右的灯也会跟着变化.最后让你把所有的灯熄灭,问你应该改变哪些灯. 首先我们可以发现 ...

  8. POJ 1222 EXTENDED LIGHTS OUT(反转)

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12616   Accepted: 8 ...

  9. [高斯消元] POJ 2345 Central heating

    Central heating Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 614   Accepted: 286 Des ...

随机推荐

  1. HDOJ2017字符串统计

    字符串统计 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  2. Setup Project 安装项目

    从vs2012起,微软已经不支持setup project了.以此纪念一下setup project.   在新建Setup Project   增加安装内容,通常是直接Oupput一个项目,或者直接 ...

  3. 技术博客rss订阅源收集

        http://blog.sina.com.cn/rss/2506410862.xml http://fullrss.net/a/http/www.cocoachina.com/cms/rss. ...

  4. display的小故事

    实在是想不出来到底整个什么题目好..姑且先整这个吧.. 本文不是讲解display这个牛逼css属性的(讲不好才是真的!),主要是分享一下一些小Tips. display:table-cell wid ...

  5. NodeJS服务器退出:完成任务,优雅退出

    上一篇文章,我们通过一个简单的例子,学习了NodeJS中对客户端的请求(request)对象的解析和处理,整个文件共享的功能已经完成.但是,纵观整个过程,还有两个地方明显需要改进: 首先,不能共享完毕 ...

  6. spring事务到底用于service层还是dao层

    Spring事务为业务逻辑进行事务管理,保证业务逻辑上数据的原子性. 事务得根据项目性质来细分:事务可以设置到三个层面(dao层.service层和web层). 第一:web层事务,这一般是针对那些安 ...

  7. WiFi安全之WPA介绍

    WPA,全称为Wi-Fi Protected Access,是一种保护WiFi安全的系统,实现了IEEE 802.11i的大部分标准,是一种替代WEP的过渡方案. 这个协议包含了前向兼容RC4的加密协 ...

  8. 使用DNSSCrypt解决DNS污染问题

    本文转自 月光博客,如有需要,请阅读原文. google近期在国内是不能访问了,dropbox这货居然也被DNS污染了,幸好发现DNSCrypt这一神器,防止DNS污染的绝佳工具. 基本原理:DNSC ...

  9. 在SQL脚本中的注释引起的奇怪问题

    在数据库安装包中,我们通过osql.exe这个工具来对相关的数据库脚本进行更新,昨天突然发现安装包报错了,说脚本错误,但我们将脚本拿到数据库查询分析器中执行,一切OK. 问题出在哪里呢? 通过使用os ...

  10. 如何用命令的方式查看你的Office2010密钥是否是永久的有效

    首先,ctrl+R ,  然后输入cmd,  回车, 进入黑框框 其次,在你的office安装位置下找到这个文件OSPP.VSB,对其右键,查看其属性,复制下它的位置.,接着  就照着下图上的操作吧~ ...